-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy path01_3_revision3.py
170 lines (139 loc) · 4.55 KB
/
01_3_revision3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
# %% [markdown]
# # Compare models
#
# 1. Load available configurations
# 2. Load validation predictions
# - calculate absolute error on common subset of data
# - select top N for plotting by MAE from smallest (best) to largest (worst) (top N as specified, default 5)
# - correlation per sample, correlation per feat, correlation overall
# - MAE plots
# 3. Load test data predictions
# - as for validation data
# - top N based on validation data
#
# Model with `UNIQUE` key refer to samples uniquly split into training, validation and test data.
# These models could not use all sample for training. The predictions on simulated values
# are therefore restricted to the validation and test data from the set of unique samples.
# The models trained on all sample have additionally missing values in their training data,
# which were not missing in the unique samples. The comparison is therefore between models
# which had different data available for training.
# %%
import logging
from pathlib import Path
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import yaml
import pimmslearn
import pimmslearn.imputation
import pimmslearn.models
import pimmslearn.nb
from pimmslearn.analyzers import compare_predictions
from pimmslearn.models.collect_dumps import select_content
pd.options.display.max_rows = 30
pd.options.display.min_rows = 10
pd.options.display.max_colwidth = 100
plt.rcParams.update({'figure.figsize': (3, 2)})
pimmslearn.plotting.make_large_descriptors(7)
logger = pimmslearn.logging.setup_nb_logger()
logging.getLogger('fontTools').setLevel(logging.WARNING)
def load_config_file(fname: Path, first_split='config_') -> dict:
with open(fname) as f:
loaded = yaml.safe_load(f)
key = f"{select_content(fname.stem, first_split=first_split)}"
return key, loaded
def build_text(s):
ret = ''
if not np.isnan(s["latent_dim"]):
ret += f'LD: {int(s["latent_dim"])} '
try:
if len(s["hidden_layers"]):
t = ",".join(str(x) for x in s["hidden_layers"])
ret += f"HL: {t}"
except TypeError:
# nan
pass
return ret
# %%
# catch passed parameters
args = None
args = dict(globals()).keys()
# %% [markdown]
# Papermill script parameters:
# %% tags=["parameters"]
# files and folders
# Datasplit folder with data for experiment
folder_experiment: str = 'runs/example'
folder_data: str = '' # specify data directory if needed
file_format: str = 'csv' # change default to pickled files
# Machine parsed metadata from rawfile workflow
fn_rawfile_metadata: str = 'data/dev_datasets/HeLa_6070/files_selected_metadata_N50.csv'
models: str = 'Median,CF,DAE,VAE,KNN' # picked models to compare (comma separated)
sel_models: str = '' # user defined comparison (comma separated)
# Restrict plotting to top N methods for imputation based on error of validation data, maximum 10
plot_to_n: int = 5
feat_name_display: str = None # display name for feature name (e.g. 'protein group')
# %%
models = 'KNN,KNN_UNIQUE'
folder_experiment = 'runs/rev3'
# %% [markdown]
# Some argument transformations
# %%
args = pimmslearn.nb.get_params(args, globals=globals())
args
# %%
args = pimmslearn.nb.args_from_dict(args)
args
# %%
figures = {}
dumps = {}
# %%
TARGET_COL = 'observed'
METRIC = 'MAE'
MIN_FREQ = None
MODELS_PASSED = args.models.split(',')
MODELS = MODELS_PASSED.copy()
FEAT_NAME_DISPLAY = args.feat_name_display
SEL_MODELS = None
if args.sel_models:
SEL_MODELS = args.sel_models.split(',')
# %%
# %% [markdown]
# # Load predictions on validation and test data split
#
# %% [markdown]
# ## Validation data
# - set top N models to plot based on validation data split
# %%
pred_val = compare_predictions.load_split_prediction_by_modelkey(
experiment_folder=args.folder_experiment,
split='val',
model_keys=MODELS_PASSED,
shared_columns=[TARGET_COL])
SAMPLE_ID, FEAT_NAME = pred_val.index.names
if not FEAT_NAME_DISPLAY:
FEAT_NAME_DISPLAY = FEAT_NAME
pred_val[MODELS]
# %%
pred_test = compare_predictions.load_split_prediction_by_modelkey(
experiment_folder=args.folder_experiment,
split='test',
model_keys=MODELS_PASSED,
shared_columns=[TARGET_COL])
pred_test
# %%
pred_val = pred_val.dropna()
pred_test = pred_test.dropna()
# %%
metrics = pimmslearn.models.Metrics()
test_metrics = metrics.add_metrics(
pred_test, key='test data')
test_metrics = pd.DataFrame(test_metrics)
test_metrics
# %%
metrics = pimmslearn.models.Metrics()
val_metrics = metrics.add_metrics(
pred_val, key='validation data')
val_metrics = pd.DataFrame(val_metrics)
val_metrics
# %%