forked from JuliaLang/julia
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbitarray.jl
272 lines (237 loc) · 7.05 KB
/
bitarray.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
# This file is a part of Julia. License is MIT: https://julialang.org/license
function dot(x::BitVector, y::BitVector)
# simplest way to mimic Array dot behavior
length(x) == length(y) || throw(DimensionMismatch())
s = 0
xc = x.chunks
yc = y.chunks
@inbounds for i = 1:length(xc)
s += count_ones(xc[i] & yc[i])
end
s
end
## slower than the unpacked version, which is MUCH slower
# than blas'd (this one saves storage though, keeping it commented
# just in case)
#function aTb(A::BitMatrix, B::BitMatrix)
#(mA, nA) = size(A)
#(mB, nB) = size(B)
#C = falses(nA, nB)
#if mA != mB; throw(DimensionMismatch()) end
#if mA == 0; return C; end
#col_ch = num_bit_chunks(mA)
## TODO: avoid using aux chunks and copy (?)
#aux_chunksA = zeros(UInt64, col_ch)
#aux_chunksB = [zeros(UInt64, col_ch) for j=1:nB]
#for j = 1:nB
#Base.copy_chunks!(aux_chunksB[j], 1, B.chunks, (j-1)*mA+1, mA)
#end
#for i = 1:nA
#Base.copy_chunks!(aux_chunksA, 1, A.chunks, (i-1)*mA+1, mA)
#for j = 1:nB
#for k = 1:col_ch
## TODO: improve
#C[i, j] += count_ones(aux_chunksA[k] & aux_chunksB[j][k])
#end
#end
#end
#C
#end
#aCb(A::BitMatrix{T}, B::BitMatrix{S}) where {T,S} = aTb(A, B)
function triu(B::BitMatrix, k::Integer=0)
m,n = size(B)
if !(-m + 1 <= k <= n + 1)
throw(ArgumentError(string("the requested diagonal, $k, must be at least",
"$(-m + 1) and at most $(n + 1) in an $m-by-$n matrix")))
end
A = falses(m,n)
Ac = A.chunks
Bc = B.chunks
for i = max(k+1,1):n
j = clamp((i - 1) * m + 1, 1, i * m)
Base.copy_chunks!(Ac, j, Bc, j, min(i-k, m))
end
A
end
function tril(B::BitMatrix, k::Integer=0)
m,n = size(B)
if !(-m - 1 <= k <= n - 1)
throw(ArgumentError(string("the requested diagonal, $k, must be at least ",
"$(-m - 1) and at most $(n - 1) in an $m-by-$n matrix")))
end
A = falses(m, n)
Ac = A.chunks
Bc = B.chunks
for i = 1:min(n, m+k)
j = clamp((i - 1) * m + i - k, 1, i * m)
Base.copy_chunks!(Ac, j, Bc, j, max(m-i+k+1, 0))
end
A
end
## diag
function diag(B::BitMatrix)
n = minimum(size(B))
v = similar(B, n)
for i = 1:n
v[i] = B[i,i]
end
v
end
## norm and rank
svd(A::BitMatrix) = svd(float(A))
qr(A::BitMatrix) = qr(float(A))
## kron
@inline function kron!(R::BitVector, a::BitVector, b::BitVector)
m = length(a)
n = length(b)
@boundscheck length(R) == n*m || throw(DimensionMismatch())
Rc = R.chunks
bc = b.chunks
for j = 1:m
a[j] && Base.copy_chunks!(Rc, (j-1)*n+1, bc, 1, n)
end
return R
end
function kron(a::BitVector, b::BitVector)
m = length(a)
n = length(b)
R = falses(n * m)
return @inbounds kron!(R, a, b)
end
function kron!(R::BitMatrix, a::BitMatrix, b::BitMatrix)
mA,nA = size(a)
mB,nB = size(b)
@boundscheck size(R) == (mA*mB, nA*nB) || throw(DimensionMismatch())
for i = 1:mA
ri = (1:mB) .+ ((i-1)*mB)
for j = 1:nA
if a[i,j]
rj = (1:nB) .+ ((j-1)*nB)
R[ri,rj] = b
end
end
end
return R
end
function kron(a::BitMatrix, b::BitMatrix)
mA,nA = size(a)
mB,nB = size(b)
R = falses(mA*mB, nA*nB)
return @inbounds kron!(R, a, b)
end
## Structure query functions
issymmetric(A::BitMatrix) = size(A, 1)==size(A, 2) && count(!iszero, A - copy(A'))==0
ishermitian(A::BitMatrix) = issymmetric(A)
function nonzero_chunks(chunks::Vector{UInt64}, pos0::Int, pos1::Int)
k0, l0 = Base.get_chunks_id(pos0)
k1, l1 = Base.get_chunks_id(pos1)
delta_k = k1 - k0
z = UInt64(0)
u = ~z
if delta_k == 0
msk_0 = (u << l0) & ~(u << l1 << 1)
else
msk_0 = (u << l0)
msk_1 = ~(u << l1 << 1)
end
@inbounds begin
(chunks[k0] & msk_0) == z || return true
delta_k == 0 && return false
for i = k0 + 1 : k1 - 1
chunks[i] == z || return true
end
(chunks[k1] & msk_1)==z || return true
end
return false
end
function istriu(A::BitMatrix)
m, n = size(A)
for j = 1:min(n,m-1)
stride = (j-1) * m
nonzero_chunks(A.chunks, stride+j+1, stride+m) && return false
end
return true
end
function istril(A::BitMatrix)
m, n = size(A)
(m == 0 || n == 0) && return true
for j = 2:n
stride = (j-1) * m
nonzero_chunks(A.chunks, stride+1, stride+min(j-1,m)) && return false
end
return true
end
# fast 8x8 bit transpose from Henry S. Warrens's "Hacker's Delight"
# http://www.hackersdelight.org/hdcodetxt/transpose8.c.txt
function transpose8x8(x::UInt64)
y = x
t = xor(y, y >>> 7) & 0x00aa00aa00aa00aa
y = xor(y, t, t << 7)
t = xor(y, y >>> 14) & 0x0000cccc0000cccc
y = xor(y, t, t << 14)
t = xor(y, y >>> 28) & 0x00000000f0f0f0f0
return xor(y, t, t << 28)
end
function form_8x8_chunk(Bc::Vector{UInt64}, i1::Int, i2::Int, m::Int, cgap::Int, cinc::Int, nc::Int, msk8::UInt64)
x = UInt64(0)
k, l = Base.get_chunks_id(i1 + (i2 - 1) * m)
r = 0
for j = 1:8
k > nc && break
x |= ((Bc[k] >>> l) & msk8) << r
if l + 8 >= 64 && nc > k
r0 = 8 - Base._mod64(l + 8)
x |= (Bc[k + 1] & (msk8 >>> r0)) << (r + r0)
end
k += cgap + (l + cinc >= 64 ? 1 : 0)
l = Base._mod64(l + cinc)
r += 8
end
return x
end
# note: assumes B is filled with 0's
function put_8x8_chunk(Bc::Vector{UInt64}, i1::Int, i2::Int, x::UInt64, m::Int, cgap::Int, cinc::Int, nc::Int, msk8::UInt64)
k, l = Base.get_chunks_id(i1 + (i2 - 1) * m)
r = 0
for j = 1:8
k > nc && break
Bc[k] |= ((x >>> r) & msk8) << l
if l + 8 >= 64 && nc > k
r0 = 8 - Base._mod64(l + 8)
Bc[k + 1] |= ((x >>> (r + r0)) & (msk8 >>> r0))
end
k += cgap + (l + cinc >= 64 ? 1 : 0)
l = Base._mod64(l + cinc)
r += 8
end
return
end
adjoint(B::Union{BitVector,BitMatrix}) = Adjoint(B)
transpose(B::Union{BitVector,BitMatrix}) = Transpose(B)
Base.copy(B::Adjoint{Bool,BitMatrix}) = transpose!(falses(size(B)), B.parent)
Base.copy(B::Transpose{Bool,BitMatrix}) = transpose!(falses(size(B)), B.parent)
function transpose!(C::BitMatrix, B::BitMatrix)
@boundscheck size(C) == reverse(size(B)) || throw(DimensionMismatch())
l1, l2 = size(B)
cgap1, cinc1 = Base._div64(l1), Base._mod64(l1)
cgap2, cinc2 = Base._div64(l2), Base._mod64(l2)
Bc = B.chunks
Cc = C.chunks
nc = length(Bc)
for i = 1:8:l1
msk8_1 = UInt64(0xff)
if (l1 < i + 7)
msk8_1 >>>= i + 7 - l1
end
for j = 1:8:l2
x = form_8x8_chunk(Bc, i, j, l1, cgap1, cinc1, nc, msk8_1)
x = transpose8x8(x)
msk8_2 = UInt64(0xff)
if (l2 < j + 7)
msk8_2 >>>= j + 7 - l2
end
put_8x8_chunk(Cc, j, i, x, l2, cgap2, cinc2, nc, msk8_2)
end
end
return C
end