forked from agda/agda-stdlib
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAny.agda
111 lines (83 loc) · 3.33 KB
/
Any.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
------------------------------------------------------------------------
-- The Agda standard library
--
-- Lists where at least one element satisfies a given property
------------------------------------------------------------------------
{-# OPTIONS --cubical-compatible --safe #-}
module Data.List.Relation.Unary.Any where
open import Data.Empty
open import Data.Fin.Base using (Fin; zero; suc)
open import Data.List.Base as List using (List; []; [_]; _∷_)
open import Data.Product as Prod using (∃; _,_)
open import Data.Sum.Base as Sum using (_⊎_; inj₁; inj₂)
open import Level using (Level; _⊔_)
open import Relation.Nullary using (¬_; yes; no; _⊎-dec_)
import Relation.Nullary.Decidable as Dec
open import Relation.Nullary.Negation using (contradiction)
open import Relation.Unary hiding (_∈_)
private
variable
a p q : Level
A : Set a
P Q : Pred A p
x : A
xs : List A
------------------------------------------------------------------------
-- Definition
-- Given a predicate P, then Any P xs means that at least one element
-- in xs satisfies P. See `Relation.Unary` for an explanation of
-- predicates.
data Any {A : Set a} (P : Pred A p) : Pred (List A) (a ⊔ p) where
here : ∀ {x xs} (px : P x) → Any P (x ∷ xs)
there : ∀ {x xs} (pxs : Any P xs) → Any P (x ∷ xs)
------------------------------------------------------------------------
-- Operations on Any
head : ¬ Any P xs → Any P (x ∷ xs) → P x
head ¬pxs (here px) = px
head ¬pxs (there pxs) = contradiction pxs ¬pxs
tail : ¬ P x → Any P (x ∷ xs) → Any P xs
tail ¬px (here px) = ⊥-elim (¬px px)
tail ¬px (there pxs) = pxs
map : P ⊆ Q → Any P ⊆ Any Q
map g (here px) = here (g px)
map g (there pxs) = there (map g pxs)
-- `index x∈xs` is the list position (zero-based) which `x∈xs` points to.
index : Any P xs → Fin (List.length xs)
index (here px) = zero
index (there pxs) = suc (index pxs)
lookup : {P : Pred A p} → Any P xs → A
lookup {xs = xs} p = List.lookup xs (index p)
infixr 5 _∷=_
_∷=_ : {P : Pred A p} → Any P xs → A → List A
_∷=_ {xs = xs} x∈xs v = xs List.[ index x∈xs ]∷= v
infixl 4 _─_
_─_ : {P : Pred A p} → ∀ xs → Any P xs → List A
xs ─ x∈xs = xs List.─ index x∈xs
-- If any element satisfies P, then P is satisfied.
satisfied : Any P xs → ∃ P
satisfied (here px) = _ , px
satisfied (there pxs) = satisfied pxs
toSum : Any P (x ∷ xs) → P x ⊎ Any P xs
toSum (here px) = inj₁ px
toSum (there pxs) = inj₂ pxs
fromSum : P x ⊎ Any P xs → Any P (x ∷ xs)
fromSum (inj₁ px) = here px
fromSum (inj₂ pxs) = there pxs
------------------------------------------------------------------------
-- Properties of predicates preserved by Any
any? : Decidable P → Decidable (Any P)
any? P? [] = no λ()
any? P? (x ∷ xs) = Dec.map′ fromSum toSum (P? x ⊎-dec any? P? xs)
satisfiable : Satisfiable P → Satisfiable (Any P)
satisfiable (x , Px) = [ x ] , here Px
------------------------------------------------------------------------
-- DEPRECATED
------------------------------------------------------------------------
-- Please use the new names as continuing support for the old names is
-- not guaranteed.
-- Version 1.4
any = any?
{-# WARNING_ON_USAGE any
"Warning: any was deprecated in v1.4.
Please use any? instead."
#-}