forked from agda/agda-stdlib
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNary.agda
379 lines (282 loc) · 16 KB
/
Nary.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
------------------------------------------------------------------------
-- The Agda standard library
--
-- Examples showing how the generic n-ary operations the stdlib provides
-- can be used
------------------------------------------------------------------------
{-# OPTIONS --cubical-compatible --safe #-}
module README.Nary where
open import Level using (Level)
open import Data.Nat.Base
open import Data.Nat.Properties
open import Data.Fin using (Fin; fromℕ; #_; inject₁)
open import Data.List
open import Data.List.Properties
open import Data.Product using (_×_; _,_)
open import Data.Sum.Base using (inj₁; inj₂)
open import Function.Base using (id; flip; _∘′_)
open import Relation.Nullary
open import Relation.Binary.Definitions using (module Tri); open Tri
open import Relation.Binary.PropositionalEquality
private
variable
a b c d e : Level
A : Set a
B : Set b
C : Set c
D : Set d
E : Set e
------------------------------------------------------------------------
-- Introduction
------------------------------------------------------------------------
-- Function.Nary.NonDependent and Data.Product.N-ary.Heterogeneous provide
-- a generic representation of n-ary heterogeneous (non dependent) products
-- and the corresponding types of (non-dependent) n-ary functions. The
-- representation works well with inference thus allowing us to use generic
-- combinators to manipulate such functions.
open import Data.Product.Nary.NonDependent
open import Function.Nary.NonDependent
open import Relation.Nary
------------------------------------------------------------------------
-- Generalised equality-manipulating combinators
------------------------------------------------------------------------
-- By default the standard library provides users with (we are leaving out
-- the implicit arguments here):
--
-- cong : (f : A₁ → B) → a₁ ≡ b₁ → f a₁ ≡ f b₁
-- cong₂ : (f : A₁ → A₂ → B) → a₁ ≡ b₁ → a₂ ≡ b₂ → f a₁ a₂ ≡ f b₁ b₂
--
-- and
--
-- subst : (P : A₁ → Set p) → a₁ ≡ b₁ → P a₁ → P b₁
-- subst₂ : (P : A₁ → A₂ → Set p) → a₁ ≡ b₁ → a₂ ≡ b₂ → P a₁ a₂ → P b₁ b₂
--
-- This pattern can be generalised to any natural number `n`. Thanks to our
-- library for n-ary functions, we can write the types and implementations
-- of `congₙ` and `substₙ`.
------------------------------------------------------------------------
-- congₙ : ∀ n (f : A₁ → ⋯ → Aₙ → B) →
-- a₁ ≡ b₁ → ⋯ aₙ ≡ bₙ → f a₁ ⋯ aₙ ≡ f b₁ ⋯ bₙ
-- It may be used directly to prove something:
_ : ∀ (as bs cs : List ℕ) →
zip (zip (as ++ []) (map id cs)) (reverse (reverse bs))
≡ zip (zip as cs) bs
_ = λ as bs cs → congₙ 3 (λ as bs → zip (zip as bs))
(++-identityʳ as)
(map-id cs)
(reverse-involutive bs)
-- Or as part of a longer derivation:
_ : ∀ m n p q → suc (m + (p * n) + (q ^ (m + n)))
≡ (m + 0) + (n * p) + (q ^ m * q ^ n) + 1
_ = λ m n p q → begin
suc (m + (p * n) + (q ^ (m + n))) ≡⟨ +-comm 1 _ ⟩
m + (p * n) + (q ^ (m + n)) + 1 ≡⟨ congₙ 3 (λ m n p → m + n + p + 1)
(+-comm 0 m)
(*-comm p n)
(^-distribˡ-+-* q m n)
⟩
m + 0 + n * p + (q ^ m) * (q ^ n) + 1 ∎ where open ≡-Reasoning
-- Partial application of the functional argument is fine: the number of arguments
-- `congₙ` is going to take is determined by its first argument (a natural number)
-- and not by the type of the function it works on.
_ : ∀ m → (m +_) ≡ ((m + 0) +_)
_ = λ m → congₙ 1 _+_ (+-comm 0 m)
-- We don't have to work on the function's first argument either: we can just as
-- easily use `congₙ` to act on the second one by `flip`ping it. See `holeₙ` for
-- a generalisation of this idea allowing to target *any* of the function's
-- arguments and not just the first or second one.
_ : ∀ m → (_+ m) ≡ (_+ (m + 0))
_ = λ m → congₙ 1 (flip _+_) (+-comm 0 m)
------------------------------------------------------------------------
-- substₙ : (P : A₁ → ⋯ → Aₙ → Set p) →
-- a₁ ≡ b₁ → ⋯ aₙ ≡ bₙ → P a₁ ⋯ aₙ → P b₁ ⋯ bₙ
-- We can play the same type of game with subst
open import Agda.Builtin.Nat using (mod-helper)
-- Because we know from the definition `mod-helper` that this equation holds:
-- mod-helper k m (suc n) (suc j) = mod-helper (suc k) m n j
-- we should be able to prove the slightly modified statement by transforming
-- all the `x + 1` into `suc x`. We can do so using `substₙ`.
_ : ∀ k m n j → mod-helper k m (n + 1) (j + 1) ≡ mod-helper (k + 1) m n j
_ = λ k m n j →
let P sk sn sj = mod-helper k m sn sj ≡ mod-helper sk m n j
in substₙ P (+-comm 1 k) (+-comm 1 n) (+-comm 1 j) refl
-----------------------------------------------------------------------
-- Generic programs working on n-ary products & functions
-----------------------------------------------------------------------
-----------------------------------------------------------------------
-- curryₙ : ∀ n → (A₁ × ⋯ × Aₙ → B) → A₁ → ⋯ → Aₙ → B
-- uncurryₙ : ∀ n → (A₁ → ⋯ → Aₙ → B) → A₁ × ⋯ × Aₙ → B
-- The first thing we may want to do generically is convert between
-- curried function types and uncurried ones. We can do this by using:
-- They both work the same way so we will focus on curryₙ only here.
-- If we pass to `curryₙ` the arity of its argument then we obtain a
-- fully curried function.
curry₁ : (A × B × C × D → E) → A → B → C → D → E
curry₁ = curryₙ 4
-- Note that here we are not flattening arbitrary nestings: products have
-- to be right nested. Which means that if you have a deeply-nested product
-- then it won't be affected by the procedure.
curry₁′ : (A × (B × C) × D → E) → A → (B × C) → D → E
curry₁′ = curryₙ 3
-- When we are currying a function, we have no obligation to pass its exact
-- arity as the parameter: we can decide to only curry part of it like so:
-- Indeed (A₁ × ⋯ × Aₙ → B) can also be seen as (A₁ × ⋯ × (Aₖ × ⋯ × Aₙ) → B)
curry₂ : (A × B × C × D → E) → A → B → (C × D) → E
curry₂ = curryₙ 3
-----------------------------------------------------------------------
-- projₙ : ∀ n (k : Fin n) → (A₁ × ⋯ × Aₙ) → Aₖ₊₁
-- Another useful class of functions to manipulate n-ary product is a
-- generic projection function. Note the (k + 1) in the return index:
-- Fin counts from 0 up.
-- It behaves as one expects (Data.Fin's #_ comes in handy to write down
-- Fin literals):
proj₃ : (A × B × C × D × E) → C
proj₃ = projₙ 5 (# 2)
-- Of course we can once more project the "tail" of the n-ary product by
-- passing `projₙ` a natural number which is smaller than the size of the
-- n-ary product, seeing (A₁ × ⋯ × Aₙ) as (A₁ × ⋯ × (Aₖ × ⋯ × Aₙ)).
proj₃′ : (A × B × C × D × E) → C × D × E
proj₃′ = projₙ 3 (# 2)
-----------------------------------------------------------------------
-- insertₙ : ∀ n (k : Fin (suc n)) →
-- B → (A₁ × ⋯ Aₙ) → (A₁ × ⋯ × Aₖ × B × Aₖ₊₁ × ⋯ Aₙ)
insert₁ : C → (A × B × D × E) → (A × B × C × D × E)
insert₁ = insertₙ 4 (# 2)
insert₁′ : C → (A × B × D × E) → (A × B × C × D × E)
insert₁′ = insertₙ 3 (# 2)
-- Note that `insertₙ` takes a `Fin (suc n)`. Indeed in an n-ary product
-- there are (suc n) positions at which one may insert a value. We may
-- insert at the front or the back of the product:
insert-front : A → (B × C × D × E) → (A × B × C × D × E)
insert-front = insertₙ 4 (# 0)
insert-back : E → (A × B × C × D) → (A × B × C × D × E)
insert-back = insertₙ 4 (# 4)
-----------------------------------------------------------------------
-- removeₙ : ∀ n (k : Fin n) → (A₁ × ⋯ Aₙ) → (A₁ × ⋯ × Aₖ × Aₖ₊₂ × ⋯ Aₙ)
-- Dual to `insertₙ`, we may remove a value.
remove₁ : (A × B × C × D × E) → (A × B × D × E)
remove₁ = removeₙ 5 (# 2)
-- Inserting at `k` and then removing at `inject₁ k` should yield the identity
remove-insert : C → (A × B × D × E) → (A × B × D × E)
remove-insert c = removeₙ 5 (inject₁ k) ∘′ insertₙ 4 k c
where k = # 2
-----------------------------------------------------------------------
-- updateₙ : ∀ n (k : Fin n) (f : (a : Aₖ₊₁) → B a) →
-- (p : A₁ × ⋯ Aₙ) → (A₁ × ⋯ × Aₖ × B (projₙ n k p) × Aₖ₊₂ × ⋯ Aₙ)
-- We can not only project out, insert or remove values: we can update them
-- in place. The type (and value) of the replacement at position k may depend
-- upon the current value at position k.
update₁ : (p : A × B × ℕ × C × D) → (A × B × Fin _ × C × D)
update₁ = updateₙ 5 (# 2) fromℕ
-- We can explicitly use the primed version of `updateₙ` to make it known to
-- Agda that the update function is non dependent. This type of information
-- is useful for inference: the tighter the constraints, the easier it is to
-- find a solution (if possible).
update₂ : (p : A × B × ℕ × C × D) → (A × B × List D × C × D)
update₂ = λ p → updateₙ′ 5 (# 2) (λ n → replicate n (projₙ 5 (# 4) p)) p
-----------------------------------------------------------------------
-- _%=_⊢_ : ∀ n → (C → D) → (A₁ → ⋯ Aₙ → D → B) → A₁ → ⋯ → Aₙ → C → B
-- Traditional composition (also known as the index update operator `_⊢_`
-- in `Relation.Unary`) focuses solely on the first argument of an n-ary
-- function. `_%=_⊢_` on the other hand allows us to touch any one of the
-- arguments.
-- In the following example we have a function `f : A → B` and `replicate`
-- of type `ℕ → B → List B`. We want ̀f` to act on the second argument of
-- replicate. Which we can do like so.
compose₁ : (A → B) → ℕ → A → List B
compose₁ f = 1 %= f ⊢ replicate
-- Here we spell out the equivalent explicit variable-manipulation and
-- prove the two functions equal.
compose₁′ : (A → B) → ℕ → A → List B
compose₁′ f n a = replicate n (f a)
compose₁-eq : compose₁ {a} {A} {b} {B} ≡ compose₁′
compose₁-eq = refl
-----------------------------------------------------------------------
-- _∷=_⊢_ : ∀ n → A → (A₁ → ⋯ Aₙ → A → B) → A₁ → ⋯ → Aₙ → B
-- Partial application usually focuses on the first argument of a function.
-- We can now partially apply a function in any of its arguments using
-- `_∷=_⊢_`. Reusing our example involving replicate: we can specialise it
-- to only output finite lists of `0`:
apply₁ : ℕ → List ℕ
apply₁ = 1 ∷= 0 ⊢ replicate
apply₁-eq : apply₁ 3 ≡ 0 ∷ 0 ∷ 0 ∷ []
apply₁-eq = refl
------------------------------------------------------------------------
-- holeₙ : ∀ n → (A → (A₁ → ⋯ Aₙ → B)) → A₁ → ⋯ → Aₙ → (A → B)
-- As we have seen earlier, `cong` acts on a function's first variable.
-- If we want to access the second one, we can use `flip`. But what about
-- the fourth one? We typically use an explicit λ-abstraction shuffling
-- variables. Not anymore.
-- Reusing mod-helper just because it takes a lot of arguments:
hole₁ : ∀ k m n j → mod-helper k (m + 1) n j ≡ mod-helper k (suc m) n j
hole₁ = λ k m n j → cong (holeₙ 2 (mod-helper k) n j) (+-comm m 1)
-----------------------------------------------------------------------
-- mapₙ : ∀ n → (B → C) → (A₁ → ⋯ Aₙ → B) → (A₁ → ⋯ → Aₙ → C)
-- (R →_) gives us the reader monad (and, a fortiori, functor). That is to
-- say that given a function (A → B) and an (R → A) we can get an (R → B)
-- This generalises to n-ary functions.
-- Reusing our `composeₙ` example: instead of applying `f` to the replicated
-- element, we can map it on the resulting list. Giving us:
map₁ : (A → B) → ℕ → A → List B
map₁ f = mapₙ 2 (map f) replicate
------------------------------------------------------------------------
-- constₙ : ∀ n → B → A₁ → ⋯ → Aₙ → B
-- `const` is basically `pure` for the reader monad discussed above. Just
-- like we can generalise the functorial action corresponding to the reader
-- functor to n-ary functions, we can do the same for `pure`.
const₁ : A → B → C → D → E → A
const₁ = constₙ 4
-- Together with `holeₙ`, this means we can make a constant function out
-- of any of the arguments. The fourth for instance:
const₂ : A → B → C → D → E → D
const₂ = holeₙ 3 (constₙ 4)
------------------------------------------------------------------------
-- Generalised quantifiers
------------------------------------------------------------------------
-- As we have seen multiple times already, one of the advantages of working
-- with non-dependent products is that they can be easily inferred. This is
-- a prime opportunity to define generic quantifiers.
-- And because n-ary relations are Set-terminated, there is no ambiguity
-- where to split between arguments & codomain. As a consequence Agda can
-- infer even `n`, the number of arguments. We can use notations which are
-- just like the ones defined in `Relation.Unary`.
------------------------------------------------------------------------
-- ∃⟨_⟩ : (A₁ → ⋯ → Aₙ → Set r) → Set _
-- ∃⟨ P ⟩ = ∃ λ a₁ → ⋯ → ∃ λ aₙ → P a₁ ⋯ aₙ
-- Returning to our favourite function taking a lot of arguments: we can
-- find a set of input for which it evaluates to 666
exist₁ : ∃⟨ (λ k m n j → mod-helper k m n j ≡ 666) ⟩
exist₁ = 19 , 793 , 3059 , 10 , refl
------------------------------------------------------------------------
-- ∀[_] : (A₁ → ⋯ → Aₙ → Set r) → Set _
-- ∀[_] P = ∀ {a₁} → ⋯ → ∀ {aₙ} → P a₁ ⋯ aₙ
all₁ : ∀[ (λ (a₁ a₂ : ℕ) → Dec (a₁ ≡ a₂)) ]
all₁ {a₁} {a₂} = a₁ ≟ a₂
------------------------------------------------------------------------
-- Π : (A₁ → ⋯ → Aₙ → Set r) → Set _
-- Π P = ∀ a₁ → ⋯ → ∀ aₙ → P a₁ ⋯ aₙ
all₂ : Π[ (λ (a₁ a₂ : ℕ) → Dec (a₁ ≡ a₂)) ]
all₂ = _≟_
------------------------------------------------------------------------
-- _⇒_ : (A₁ → ⋯ → Aₙ → Set r) → (A₁ → ⋯ → Aₙ → Set s) → (A₁ → ⋯ → Aₙ → Set _)
-- P ⇒ Q = λ a₁ → ⋯ → λ aₙ → P a₁ ⋯ aₙ → Q a₁ ⋯ aₙ
antisym : ∀[ _≤_ ⇒ _≥_ ⇒ _≡_ ]
antisym = ≤-antisym
------------------------------------------------------------------------
-- _∪_ : (A₁ → ⋯ → Aₙ → Set r) → (A₁ → ⋯ → Aₙ → Set s) → (A₁ → ⋯ → Aₙ → Set _)
-- P ∪ Q = λ a₁ → ⋯ → λ aₙ → P a₁ ⋯ aₙ ⊎ Q a₁ ⋯ aₙ
≤->-connex : Π[ _≤_ ∪ _>_ ]
≤->-connex m n with <-cmp m n
... | tri< a ¬b ¬c = inj₁ (<⇒≤ a)
... | tri≈ ¬a b ¬c = inj₁ (≤-reflexive b)
... | tri> ¬a ¬b c = inj₂ c
------------------------------------------------------------------------
-- _∩_ : (A₁ → ⋯ → Aₙ → Set r) → (A₁ → ⋯ → Aₙ → Set s) → (A₁ → ⋯ → Aₙ → Set _)
-- P ∩ Q = λ a₁ → ⋯ → λ aₙ → P a₁ ⋯ aₙ × Q a₁ ⋯ aₙ
<-inversion : ∀[ _<_ ⇒ _≤_ ∩ _≢_ ]
<-inversion m<n = <⇒≤ m<n , <⇒≢ m<n
------------------------------------------------------------------------
-- ∁ : (A₁ → ⋯ → Aₙ → Set r) → (A₁ → ⋯ → Aₙ → Set _)
-- ∁ P = λ a₁ → ⋯ → λ aₙ → ¬ (P a₁ ⋯ aₙ)
m<n⇒m≱n : ∀[ _>_ ⇒ ∁ _≤_ ]
m<n⇒m≱n m>n m≤n = <⇒≱ m>n m≤n