forked from agda/agda-stdlib
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathInduction.agda
185 lines (151 loc) · 7.37 KB
/
Induction.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
------------------------------------------------------------------------
-- The Agda standard library
--
-- Induction over Fin
------------------------------------------------------------------------
{-# OPTIONS --cubical-compatible --safe #-}
{-# OPTIONS --warn=noUserWarning #-} -- for deprecated _≺_ (issue #1726)
open import Data.Fin.Base
open import Data.Fin.Properties
open import Data.Nat.Base as ℕ using (ℕ; zero; suc; _∸_; s≤s)
open import Data.Nat.Properties using (n<1+n; ≤⇒≯)
import Data.Nat.Induction as ℕ
import Data.Nat.Properties as ℕ
open import Data.Product.Base using (_,_)
open import Data.Vec.Base as Vec using (Vec; []; _∷_)
open import Data.Vec.Relation.Unary.Linked as Linked using (Linked; [-]; _∷_)
import Data.Vec.Relation.Unary.Linked.Properties as Linkedₚ
open import Function.Base using (flip; _$_)
open import Induction
open import Induction.WellFounded as WF
open import Level using (Level)
open import Relation.Binary
using (Rel; Decidable; IsPartialOrder; IsStrictPartialOrder; StrictPartialOrder)
import Relation.Binary.Construct.Flip.EqAndOrd as EqAndOrd
import Relation.Binary.Construct.Flip.Ord as Ord
import Relation.Binary.Construct.NonStrictToStrict as ToStrict
import Relation.Binary.Construct.On as On
open import Relation.Binary.Definitions using (Tri; tri<; tri≈; tri>)
open import Relation.Binary.PropositionalEquality
open import Relation.Nullary.Decidable using (yes; no)
open import Relation.Nullary.Negation using (contradiction)
open import Relation.Unary using (Pred)
module Data.Fin.Induction where
private
variable
ℓ : Level
n : ℕ
------------------------------------------------------------------------
-- Re-export accessability
open WF public using (Acc; acc)
------------------------------------------------------------------------
-- Induction over _<_
<-wellFounded : WellFounded {A = Fin n} _<_
<-wellFounded = On.wellFounded toℕ ℕ.<-wellFounded
<-weakInduction-startingFrom : ∀ (P : Pred (Fin (suc n)) ℓ) →
∀ {i} → P i →
(∀ j → P (inject₁ j) → P (suc j)) →
∀ {j} → j ≥ i → P j
<-weakInduction-startingFrom P {i} Pi Pᵢ⇒Pᵢ₊₁ {j} j≥i = induct (<-wellFounded _) (<-cmp i j) j≥i
where
induct : ∀ {j} → Acc _<_ j → Tri (i < j) (i ≡ j) (i > j) → j ≥ i → P j
induct (acc rs) (tri≈ _ refl _) i≤j = Pi
induct (acc rs) (tri> _ _ i>sj) i≤j with () ← ≤⇒≯ i≤j i>sj
induct {suc j} (acc rs) (tri< (s≤s i≤j) _ _) _ = Pᵢ⇒Pᵢ₊₁ j P[1+j]
where
toℕj≡toℕinjJ = sym $ toℕ-inject₁ j
P[1+j] = induct (rs _ (s≤s (subst (ℕ._≤ toℕ j) toℕj≡toℕinjJ ≤-refl)))
(<-cmp i $ inject₁ j) (subst (toℕ i ℕ.≤_) toℕj≡toℕinjJ i≤j)
<-weakInduction : (P : Pred (Fin (suc n)) ℓ) →
P zero →
(∀ i → P (inject₁ i) → P (suc i)) →
∀ i → P i
<-weakInduction P P₀ Pᵢ⇒Pᵢ₊₁ i = <-weakInduction-startingFrom P P₀ Pᵢ⇒Pᵢ₊₁ ℕ.z≤n
------------------------------------------------------------------------
-- Induction over _>_
private
acc-map : ∀ {x : Fin n} → Acc ℕ._<_ (n ∸ toℕ x) → Acc _>_ x
acc-map {n} (acc rs) = acc λ y y>x →
acc-map (rs (n ∸ toℕ y) (ℕ.∸-monoʳ-< y>x (toℕ≤n y)))
>-wellFounded : WellFounded {A = Fin n} _>_
>-wellFounded {n} x = acc-map (ℕ.<-wellFounded (n ∸ toℕ x))
>-weakInduction : (P : Pred (Fin (suc n)) ℓ) →
P (fromℕ n) →
(∀ i → P (suc i) → P (inject₁ i)) →
∀ i → P i
>-weakInduction {n = n} P Pₙ Pᵢ₊₁⇒Pᵢ i = induct (>-wellFounded i)
where
induct : ∀ {i} → Acc _>_ i → P i
induct {i} (acc rec) with n ℕ.≟ toℕ i
... | yes n≡i = subst P (toℕ-injective (trans (toℕ-fromℕ n) n≡i)) Pₙ
... | no n≢i = subst P (inject₁-lower₁ i n≢i) (Pᵢ₊₁⇒Pᵢ _ Pᵢ₊₁)
where Pᵢ₊₁ = induct (rec _ (ℕ.≤-reflexive (cong suc (sym (toℕ-lower₁ i n≢i)))))
------------------------------------------------------------------------
-- Well-foundedness of other (strict) partial orders on Fin
module _ {_≈_ : Rel (Fin n) ℓ} where
-- Every (strict) partial order over `Fin n' is well-founded.
-- Intuition: there cannot be any infinite descending chains simply
-- because Fin n has only finitely many inhabitants. Thus any chain
-- of length > n must have a cycle (which is forbidden by
-- irreflexivity).
spo-wellFounded : ∀ {r} {_⊏_ : Rel (Fin n) r} →
IsStrictPartialOrder _≈_ _⊏_ → WellFounded _⊏_
spo-wellFounded {_} {_⊏_} isSPO i = go n i pigeon where
module ⊏ = IsStrictPartialOrder isSPO
go : ∀ m i →
((xs : Vec (Fin n) m) → Linked (flip _⊏_) (i ∷ xs) → WellFounded _⊏_) →
Acc _⊏_ i
go zero i k = k [] [-] i
go (suc m) i k = acc $ λ j j⊏i → go m j (λ xs i∷xs↑ → k (j ∷ xs) (j⊏i ∷ i∷xs↑))
pigeon : (xs : Vec (Fin n) n) → Linked (flip _⊏_) (i ∷ xs) → WellFounded _⊏_
pigeon xs i∷xs↑ =
let (i₁ , i₂ , i₁<i₂ , xs[i₁]≡xs[i₂]) = pigeonhole (n<1+n n) (Vec.lookup (i ∷ xs)) in
let xs[i₁]⊏xs[i₂] = Linkedₚ.lookup⁺ (Ord.transitive _⊏_ ⊏.trans) {xs = i ∷ xs} i∷xs↑ i₁<i₂ in
let xs[i₁]⊏xs[i₁] = ⊏.<-respʳ-≈ (⊏.Eq.reflexive xs[i₁]≡xs[i₂]) xs[i₁]⊏xs[i₂] in
contradiction xs[i₁]⊏xs[i₁] (⊏.irrefl ⊏.Eq.refl)
po-wellFounded : ∀ {r} {_⊑_ : Rel (Fin n) r} →
IsPartialOrder _≈_ _⊑_ → WellFounded (ToStrict._<_ _≈_ _⊑_)
po-wellFounded isPO =
spo-wellFounded (ToStrict.<-isStrictPartialOrder _≈_ _ isPO)
-- The inverse order is also well-founded, i.e. every (strict)
-- partial order is also Noetherian.
spo-noetherian : ∀ {r} {_⊏_ : Rel (Fin n) r} →
IsStrictPartialOrder _≈_ _⊏_ → WellFounded (flip _⊏_)
spo-noetherian isSPO = spo-wellFounded (EqAndOrd.isStrictPartialOrder isSPO)
po-noetherian : ∀ {r} {_⊑_ : Rel (Fin n) r} → IsPartialOrder _≈_ _⊑_ →
WellFounded (flip (ToStrict._<_ _≈_ _⊑_))
po-noetherian isPO =
spo-noetherian (ToStrict.<-isStrictPartialOrder _≈_ _ isPO)
------------------------------------------------------------------------
-- DEPRECATED NAMES
------------------------------------------------------------------------
-- Please use the new names as continuing support for the old names is
-- not guaranteed.
-- Version 2.0
≺-Rec : RecStruct ℕ ℓ ℓ
≺-Rec = WfRec _≺_
≺-wellFounded : WellFounded _≺_
≺-wellFounded = Subrelation.wellFounded ≺⇒<′ ℕ.<′-wellFounded
module _ {ℓ} where
open WF.All ≺-wellFounded ℓ public
renaming
( wfRecBuilder to ≺-recBuilder
; wfRec to ≺-rec
)
hiding (wfRec-builder)
{-# WARNING_ON_USAGE ≺-Rec
"Warning: ≺-Rec was deprecated in v2.0.
Please use <-Rec instead."
#-}
{-# WARNING_ON_USAGE ≺-wellFounded
"Warning: ≺-wellFounded was deprecated in v2.0.
Please use <-wellFounded instead."
#-}
{-# WARNING_ON_USAGE ≺-recBuilder
"Warning: ≺-recBuilder was deprecated in v2.0.
Please use <-recBuilder instead."
#-}
{-# WARNING_ON_USAGE ≺-rec
"Warning: ≺-rec was deprecated in v2.0.
Please use <-rec instead."
#-}