forked from agda/agda-stdlib
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathEffectful.agda
84 lines (63 loc) · 2.27 KB
/
Effectful.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
------------------------------------------------------------------------
-- The Agda standard library
--
-- An effectful view of List⁺
------------------------------------------------------------------------
{-# OPTIONS --cubical-compatible --safe #-}
module Data.List.NonEmpty.Effectful where
open import Agda.Builtin.List
import Data.List.Effectful as List
open import Data.List.NonEmpty.Base
open import Data.Product.Base using (uncurry)
open import Effect.Functor
open import Effect.Applicative
open import Effect.Monad
open import Effect.Comonad
open import Function
------------------------------------------------------------------------
-- List⁺ applicative functor
functor : ∀ {f} → RawFunctor {f} List⁺
functor = record
{ _<$>_ = map
}
applicative : ∀ {f} → RawApplicative {f} List⁺
applicative = record
{ rawFunctor = functor
; pure = [_]
; _<*>_ = ap
}
------------------------------------------------------------------------
-- List⁺ monad
monad : ∀ {f} → RawMonad {f} List⁺
monad = record
{ rawApplicative = applicative
; _>>=_ = flip concatMap
}
------------------------------------------------------------------------
-- List⁺ comonad
comonad : ∀ {f} → RawComonad {f} List⁺
comonad = record
{ extract = head
; extend = λ f → uncurry (extend f) ∘′ uncons
} where
extend : ∀ {A B} → (List⁺ A → B) → A → List A → List⁺ B
extend f x xs@[] = f (x ∷ xs) ∷ []
extend f x xs@(y ∷ ys) = f (x ∷ xs) ∷⁺ extend f y ys
------------------------------------------------------------------------
-- Get access to other monadic functions
module TraversableA {f g F} (App : RawApplicative {f} {g} F) where
open RawApplicative App
sequenceA : ∀ {A} → List⁺ (F A) → F (List⁺ A)
sequenceA (x ∷ xs) = _∷_ <$> x ⊛ List.TraversableA.sequenceA App xs
mapA : ∀ {a} {A : Set a} {B} → (A → F B) → List⁺ A → F (List⁺ B)
mapA f = sequenceA ∘ map f
forA : ∀ {a} {A : Set a} {B} → List⁺ A → (A → F B) → F (List⁺ B)
forA = flip mapA
module TraversableM {m n M} (Mon : RawMonad {m} {n} M) where
open RawMonad Mon
open TraversableA rawApplicative public
renaming
( sequenceA to sequenceM
; mapA to mapM
; forA to forM
)