forked from Kyle1993/Amazon-Kaggle
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprocess.py
85 lines (74 loc) · 3.44 KB
/
process.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
from train import *
from continue_train import *
from eval import *
from predict import *
from train_2epoch import *
from train_3epoch import *
# model_path = '../amazon2/inception'
# train_gpu = 0
# validate_gpu = -1
# train_batch_size = 128
# validate_batch_size = 128
# validate_batch_num = 8
# resize = 224
# train(model_path,train_batch_size,validate_batch_size,validate_batch_num,resize,train_gpu,validate_gpu)
# continue_train(model_path,train_batch_size,validate_batch_size,validate_batch_num,train_gpu,validate_gpu)
# eval(model_path,train_batch_size,train_gpu)
# predict(model_path,train_batch_size,train_gpu)
# predict('../amazon2/resnet34',128,0)
# train_2epoch('../amazon2/pynet10',1e-4,24,8,8,256,0,1)
# eval('../amazon2/densenet161',24,3)
# predict('../amazon2/densenet161',24,3)
# train_2epoch('../amazon2/inception',1e-6,32,8,8,299,0,1) #16 5g
# predict('../amazon2/_alexnet',128,2)
# eval('../amazon2/pynet10',14,256,0)
# predict('../amazon2/pynet10',14,256,0)
# train_2epoch('../amazon2/resnet101',1e-4,64,8,8,256,3,2)
# train_2epoch('../amazon2/squeezenet11',1e-4,256,128,4,224,0)
# eval('../amazon2/squeezenet11',256,224,0)
# predict('../amazon2/squeezenet11',256,224,0)
# eval('../amazon2/resnet101',32,256,3)
# predict('../amazon2/resnet101',32,256,3)
# continue_train('../amazon2/squeezenet11',3,1e-4/(50*10),256,128,4,224,0,1)
# eval('../amazon2/squeezenet11',128,224,1)
# predict('../amazon2/squeezenet11',128,224,1)
# train_2epoch('../amazon2/vgg13',1e-4,64,4,16,224,0,2)
# train_2epoch('../amazon2/resnet34',1e-4,128,1,1,256,0)
# eval('../amazon2/resnet34',32,256,2)
# predict('../amazon2/resnet34',32,256,2)
# train_2epoch('../amazon2/resnet152',1e-4,32,0,0,256,0)
# train_2epoch('../amazon2/densenet161',1e-4,32,32,2,256,3)
# train_2epoch('../amazon2/resnet50',1e-4,28,32,8,256,2)
# eval('../amazon2/resnet152',128,256,0)
# predict('../amazon2/resnet152',128,256,0)
# eval('../amazon2/resnet50',128,256,0)
# predict('../amazon2/resnet50',128,256,0)
# eval('../amazon2/densenet161',256,256,0)
# predict('../amazon2/densenet161',256,256,0)
# train_2epoch('../amazon2/resnet18',1e-4,64,64,4,256,1)
# eval('../amazon2/resnet18',64,256,1)'../amazon2/densenet161_new'
# predict('../amazon2/resnet18',64,256,1)
# train_2epoch('../amazon2/densenet161_new',1e-4,32,32,8,256,3)
# eval('../amazon2/densenet161_new',64,256,3)
# predict('../amazon2/densenet161_new',256,256,3)
# continue_train('../amazon2/densenet161_new',1,(1e-4/500),32,32,8,256,3)
# eval('../amazon2/densenet161_new',128,256,3)
# predict('../amazon2/densenet161_new',128,256,2)
# train_2epoch('../amazon2/densenet201_new',1e-4,32,32,4,256,1)
# predict('../amazon2/resnet18',64,256,2)
# eval('../amazon2/densenet201_new',128,256,2)
# predict('../amazon2/densenet201_new',128,256,2)
# continue_train('../amazon2/densenet201_3epoch',1,(1e-4/500),32,32,8,256,1)
# eval('../amazon2/densenet201_3epoch',128,256,1)
# predict('../amazon2/densenet201_3epoch',128,256,1)
# train_3epoch('../amazon2/resnet34_new',1e-4,128,64,8,256,1)
# eval('../amazon2/resnet34_new',128,256,1)
# predict('../amazon2/resnet34_new',128,256,1)
# train_3epoch('../amazon2/resnet50_new',1e-4,64,32,8,256,0)
# eval('../amazon2/resnet50_new',128,256,0)
# predict('../amazon2/resnet50_new',128,256,0)
# train_2epoch('../amazon2/resnet18_new',1e-4,256,128,8,256,0)
# eval('../amazon2/resnet18_new',256,256,0)
# predict('../amazon2/resnet18_new',256,256,0)
# predict('../amazon2/resnet101_new',256,256,3)
train_2epoch('../amazon2/vgg11',1e-4,32,32,1,224,2)