|
| 1 | +import pandas as pd |
| 2 | +from torch import np # Torch wrapper for Numpy |
| 3 | + |
| 4 | +import os |
| 5 | +from PIL import Image |
| 6 | +import h5py |
| 7 | +import random |
| 8 | +import torch |
| 9 | +from torch.utils.data.dataset import Dataset |
| 10 | +from torch.utils.data import DataLoader |
| 11 | +from torchvision import transforms |
| 12 | +import pickle |
| 13 | + |
| 14 | +class AmazonDateset_train(Dataset): |
| 15 | + def __init__(self, train_index, img_path, img_ext,label_path,resize=None): |
| 16 | + super(AmazonDateset_train, self).__init__() |
| 17 | + self.img_path = img_path |
| 18 | + self.img_ext = img_ext |
| 19 | + if resize != 256: |
| 20 | + self.transform = transforms.Compose([transforms.Scale(resize),transforms.ToTensor(),transforms.Normalize([0.485, 0.456, 0.406],[0.229, 0.224, 0.225])]) |
| 21 | + else: |
| 22 | + self.transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize([0.485, 0.456, 0.406],[0.229, 0.224, 0.225])]) |
| 23 | + |
| 24 | + |
| 25 | + self.img_index = train_index |
| 26 | + self.label = pickle.load(open(label_path,'rb')) |
| 27 | + |
| 28 | + |
| 29 | + def __getitem__(self, index): |
| 30 | + img_index = index//8 |
| 31 | + tft = index%8 |
| 32 | + img = Image.open(self.img_path + 'train_'+str(self.img_index[img_index]) + self.img_ext) |
| 33 | + if tft >= 4: |
| 34 | + img = img.transpose(Image.FLIP_LEFT_RIGHT) |
| 35 | + r = tft % 4 |
| 36 | + R = [None, Image.ROTATE_90, Image.ROTATE_180, Image.ROTATE_270][r] |
| 37 | + if R != None: |
| 38 | + img = img.transpose(R) |
| 39 | + |
| 40 | + img = img.convert('RGB') |
| 41 | + img = self.transform(img) |
| 42 | + label = torch.from_numpy(self.label['train_'+str(self.img_index[img_index])]).float() |
| 43 | + return img, label |
| 44 | + |
| 45 | + def __len__(self): |
| 46 | + return len(self.img_index)*8 |
| 47 | + |
| 48 | + |
| 49 | +class AmazonDateset_validate(Dataset): |
| 50 | + def __init__(self, validate_index, img_path, img_ext,label_path,transform_type=0,random_transform=False,resize=None): |
| 51 | + super(AmazonDateset_validate, self).__init__() |
| 52 | + self.img_path = img_path |
| 53 | + self.img_ext = img_ext |
| 54 | + self.transform_type = transform_type |
| 55 | + self.random_transform = random_transform |
| 56 | + if resize != 256: |
| 57 | + self.transform = transforms.Compose([transforms.Scale(resize),transforms.ToTensor(),transforms.Normalize([0.485, 0.456, 0.406],[0.229, 0.224, 0.225])]) |
| 58 | + else: |
| 59 | + self.transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize([0.485, 0.456, 0.406],[0.229, 0.224, 0.225])]) |
| 60 | + |
| 61 | + self.img_index = validate_index |
| 62 | + self.label = pickle.load(open(label_path,'rb')) |
| 63 | + |
| 64 | + def __getitem__(self, index): |
| 65 | + img = Image.open(self.img_path + 'train_'+str(self.img_index[index]) + self.img_ext) |
| 66 | + if self.random_transform: |
| 67 | + tft = random.randint(0, 7) |
| 68 | + else: |
| 69 | + tft = self.transform_type |
| 70 | + if tft >= 4: |
| 71 | + img = img.transpose(Image.FLIP_LEFT_RIGHT) |
| 72 | + r = tft % 4 |
| 73 | + R = [None, Image.ROTATE_90, Image.ROTATE_180, Image.ROTATE_270][r] |
| 74 | + if R != None: |
| 75 | + img = img.transpose(R) |
| 76 | + |
| 77 | + img = img.convert('RGB') |
| 78 | + img = self.transform(img) |
| 79 | + label = torch.from_numpy(self.label['train_'+str(self.img_index[index])]).float() |
| 80 | + return img, label |
| 81 | + |
| 82 | + def __len__(self): |
| 83 | + return len(self.img_index) |
| 84 | + |
| 85 | +class KaggleAmazonDataset_test(Dataset): |
| 86 | + |
| 87 | + def __init__(self, img_path,transform_type=0,resize=None): |
| 88 | + |
| 89 | + self.img_dir = img_path |
| 90 | + self.img_list = os.listdir(img_path) |
| 91 | + self.transform_type = transform_type |
| 92 | + if resize != 256: |
| 93 | + self.transform = transforms.Compose([transforms.Scale(resize),transforms.ToTensor(),transforms.Normalize([0.485, 0.456, 0.406],[0.229, 0.224, 0.225])]) |
| 94 | + else: |
| 95 | + self.transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize([0.485, 0.456, 0.406],[0.229, 0.224, 0.225])]) |
| 96 | + |
| 97 | + def __getitem__(self, index): |
| 98 | + img = Image.open(self.img_dir + self.img_list[index]) |
| 99 | + |
| 100 | + tft = self.transform_type # transform_type |
| 101 | + if tft >= 4: |
| 102 | + img = img.transpose(Image.FLIP_LEFT_RIGHT) |
| 103 | + r = tft % 4 |
| 104 | + R = [None, Image.ROTATE_90, Image.ROTATE_180, Image.ROTATE_270][r] |
| 105 | + if R != None: |
| 106 | + img = img.transpose(R) |
| 107 | + |
| 108 | + img = img.convert('RGB') |
| 109 | + img = self.transform(img) |
| 110 | + |
| 111 | + return img,self.img_list[index].split('.')[0] |
| 112 | + |
| 113 | + def __len__(self): |
| 114 | + return len(self.img_list) |
| 115 | + |
| 116 | + |
| 117 | + |
| 118 | + |
| 119 | +if __name__=='__main__': |
| 120 | + DS = '/home/kyle/PythonProject/Amazon/train_validate_dataset.h5' |
| 121 | + # IMG_TRAIN_PATH = '/home/jianglibin/PythonProject/Amazon/data/train-jpg/' |
| 122 | + CSV_PATH = '/home/kyle/PythonProject/AmazonData/train_v2.csv' |
| 123 | + IMG_PATH = '/home/kyle/PythonProject/AmazonData/train-jpg/' |
| 124 | + IMG_EXT = '.jpg' |
| 125 | + LABEL_PATH = '/home/kyle/PythonProject/Amazon/labels.h5' |
| 126 | + |
| 127 | + IMG_TEST_PATH = '/home/kyle/PythonProject/AmazonData/test-jpg/' |
| 128 | + |
| 129 | + |
0 commit comments