-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathcomposites.js
312 lines (265 loc) · 16.5 KB
/
composites.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
// ****************************************************************************************************************** //
// ******************* Module compiling the compositing and time series processing functionalities ****************** //
// ****************************************************************************************************************** //
// A functioned to generate a harmonized time series from a Sentinel-2 Image Collection.
// Harmonized means that the generated temporal aggregates are equally spaced in time,
// i.e. by the number of days specified by the "agg_interval" argument
exports.harmonizedTS = function(masked_collection, band_list, time_intervals, options){
var band_name = options.band_name || 'NDVI';
var agg_type = options.agg_type || 'median';
// a wrapper function for stacking the generated Sentinel-2 temporal aggregates
function _stackBands(time_interval, stack){
var outputs = exports.aggregateStack(masked_collection, band_list, time_interval,
{agg_type: agg_type, band_name: band_name});
return ee.List(stack).add(ee.Image(outputs));
}
// Initialize the list of Sentinel_2 images.
var stack = ee.List([]);
// Populate the stack of sentinel-2 images with the specified bands/VIs
var agg_stack = ee.List(time_intervals).iterate(_stackBands, stack);
return ee.ImageCollection(ee.List(agg_stack)).sort('system:time_start')
};
//Define function to extract time intervals to use to generate the temporal composites from Sentinel collections
exports.extractTimeRanges = function(start, end, agg_interval){
/*
Extract the time range data from the received time range and aggregation interval e.g.,
input time interval: time_interval = ['2019-01-01','2020-01-01'], agg_interval: 60 days
generate the following time intervals:
time_range = [("2019-01-01T00:00:00Z", "2019-03-01T00:00:00Z"),
("2019-03-01T00:00:00Z", "2019-05-01T00:00:00Z"),
("2019-05-01T00:00:00Z", "2019-07-01T00:00:00Z"),
("2019-07-01T00:00:00Z", "2019-09-01T00:00:00Z"),
("2019-09-01T00:00:00Z", "2019-11-01T00:00:00Z"),
("2019-11-01T00:00:00Z", "2020-01-01T00:00:00Z")
*/
var start_date = ee.Date(start);
var end_date = ee.Date(end);
// Number of intervals in the given "time_range" based on the specified "agg_interval" period
var interval_no = ee.Date(end).difference(ee.Date(start), 'day').divide(agg_interval).round();
var month_check = ee.Algorithms.If(ee.Number(30.4375 / agg_interval).round().gt(0),
ee.Number(30.4375 / agg_interval).round(),
ee.Number(1)); // The number of aggregation intervals within a month
// Compute the relative date delta (in months) to add to each preceding period to compute the new one
var rel_delta = ee.Number(end_date.difference(start_date, 'day'))
.divide(ee.Number(30.4375).multiply(interval_no)).ceil(); // 30.4375 days = average month length
// Compute the first time interval end date by adding the relative date delta (in months) to the start date
end_date = start_date.advance(start_date.advance(rel_delta, 'month')
.difference(start_date, 'day')
.divide(month_check), 'day')
.advance(-1, 'second');
var time_intervals = ee.List([ee.List([start_date, end_date])]);
time_intervals = ee.List(ee.List.sequence(1, interval_no.subtract(1)).iterate(function(x,previous){
start_date = ee.Date(ee.List(ee.List(previous).reverse().get(0)).get(1))
.advance(1, 'second'); //end_date of last element
end_date = start_date
.advance(start_date.advance(rel_delta, 'month')
.difference(start_date, 'day')
.divide(month_check), 'day')
.advance(-1, 'second');
return ee.List(previous).add(ee.List([start_date, end_date]));
}, time_intervals));
return time_intervals;
}
// Define function to generate the temporally-aggregated image for a given "time_interval"
exports.aggregateStack = function(masked_collection, band_list, time_interval, options){
var band_name = options.band_name || 'NDVI';
var agg_type = options.agg_type || 'median';
time_interval = ee.List(time_interval);
var agg_interval = ee.Date(time_interval.get(1)).difference(time_interval.get(0), 'day');
// Set the centre of the time interval as the system:time_start date
var timestamp = {'system:time_start': ee.Date(time_interval.get(0))
.advance(ee.Number(agg_interval.divide(2)).ceil(), 'day')
.millis()};
var agg_image;
if (agg_type === 'geomedian') {
// Reduces the time interval using the geomedian, as it performs better for auto-correlated variables,
// i.e. spectral bands. See: Roberts, D., Mueller, N., & McIntyre, A. (2017).
// High-dimensional pixel composites from earth observation time series.
// IEEE Transactions on Geoscience and Remote Sensing, 55(11), 6254-6264.
// A condition is provided in case the time interval does not contain any cloud-free images,
// which likely happens in the sub-tropics when a short aggregation interval is used.
agg_image = ee.Algorithms.If(
masked_collection.filterDate(time_interval.get(0), time_interval.get(1)).size().gt(0),
masked_collection.filterDate(time_interval.get(0), time_interval.get(1))
.select(band_list)
.reduce(ee.Reducer.geometricMedian(band_list.length), 4)
.rename(band_list)
.set(timestamp),
ee.Image(ee.List(band_list.slice(1))
.iterate(function(band, stack){return ee.Image(stack).addBands(ee.Image(0).mask())},
ee.Image(0).mask())).rename(band_list).set(timestamp));
} else if (agg_type === 'median') {
agg_image = ee.Algorithms.If(
masked_collection.filterDate(time_interval.get(0), time_interval.get(1)).size().gt(0),
masked_collection.filterDate(time_interval.get(0), time_interval.get(1))
.select(band_list)
.reduce(ee.Reducer.median(), 4)
.rename(band_list)
.set(timestamp),
ee.Image(ee.List(band_list.slice(1))
.iterate(function(band, stack){return ee.Image(stack).addBands(ee.Image(0).mask())},
ee.Image(0).mask())).rename(band_list).set(timestamp));
} else if (agg_type === 'max_band') {
agg_image = ee.Algorithms.If(
masked_collection.filterDate(time_interval.get(0), time_interval.get(1)).size().gt(0),
masked_collection.filterDate(time_interval.get(0), time_interval.get(1))
.select(band_list)
.qualityMosaic(band_name)
.set(timestamp),
ee.Image(ee.List(band_list.slice(1))
.iterate(function(band, stack){return ee.Image(stack).addBands(ee.Image(0).mask())},
ee.Image(0).mask())).rename(band_list).set(timestamp));
} else if (agg_type === 'sum') {
agg_image = ee.Algorithms.If(
masked_collection.filterDate(time_interval.get(0), time_interval.get(1)).size().gt(0),
masked_collection.filterDate(time_interval.get(0), time_interval.get(1))
.select(band_list)
.reduce(ee.Reducer.sum(), 4)
.rename(band_list)
.set(timestamp),
ee.Image(ee.List(band_list.slice(1))
.iterate(function(band, stack){return ee.Image(stack).addBands(ee.Image(0).mask())},
ee.Image(0).mask())).rename(band_list).set(timestamp));
} else if (agg_type === 'count') {
agg_image = ee.Algorithms.If(
masked_collection.filterDate(time_interval.get(0), time_interval.get(1)).size().gt(0),
masked_collection.filterDate(time_interval.get(0), time_interval.get(1))
.select(band_list)
.reduce(ee.Reducer.count(), 4)
.rename(band_list)
.set(timestamp),
ee.Image(ee.List(band_list.slice(1))
.iterate(function(band, stack){return ee.Image(stack).addBands(ee.Image(0).mask())},
ee.Image(0).mask())).rename(band_list).set(timestamp));
} else if (agg_type === 'mean') {
agg_image = ee.Algorithms.If(
masked_collection.filterDate(time_interval.get(0), time_interval.get(1)).size().gt(0),
masked_collection.filterDate(time_interval.get(0), time_interval.get(1))
.select(band_list)
.reduce(ee.Reducer.mean(), 4)
.rename(band_list)
.set(timestamp),
ee.Image(ee.List(band_list.slice(1))
.iterate(function(band, stack){return ee.Image(stack).addBands(ee.Image(0).mask())},
ee.Image(0).mask())).rename(band_list).set(timestamp));
}
return agg_image
}
// Runs an harmonic regression through the Sentinel-2 time series provided
// The returned time series is gapless and smoothened, for better interpretation when plotted
// Adapted from: Kibret, K. S., Marohn, C., & Cadisch, G. (2020).
// Use of MODIS EVI to map crop phenology, identify cropping systems,
// detect land use change and drought risk in Ethiopia–an application of Google Earth Engine.
// European Journal of Remote Sensing, 53(1), 176-191.
exports.harmonicRegression = function(ts, band, harmonics){
// Define the number of cycles per year to model.
// Make a list of harmonic frequencies to model.
// These also serve as band name suffixes.
var harmonic_frequencies = ee.List.sequence(1, harmonics);
var from_date = ts.first().date();
// Function to get a sequence of band names for harmonic terms.
function _constructBandNames(base, list) {
return ee.List(list).map(function(i) {
return ee.String(base).cat(ee.Number(i).int());
});
}
// Construct lists of names for the harmonic terms.
var cos_names = _constructBandNames('cos_', harmonic_frequencies);
var sin_names = _constructBandNames('sin_', harmonic_frequencies);
// Independent variables.
var independents = ee.List(['constant', 't']).cat(cos_names).cat(sin_names);
// Function to add a time band.
function _addDependents(image) {
// Compute time in fractional years since the epoch.
var years = image.date().difference(from_date, 'year');
var time_rad = ee.Image(years.multiply(2 * Math.PI)).rename('t');
var constant = ee.Image(1);
return image.addBands(constant).addBands(time_rad.float());
}
// Function to compute the specified number of harmonics
// and add them as bands. Assumes the time band is present.
function _addHarmonics(freqs) {
return function(image) {
// Make an image of frequencies.
var frequencies = ee.Image.constant(freqs);
// This band should represent time in radians.
var time = ee.Image(image).select('t');
// Get the cosine terms.
var cosines = time.multiply(frequencies).cos().rename(cos_names);
// Get the sin terms.
var sines = time.multiply(frequencies).sin().rename(sin_names);
return image.addBands(cosines).addBands(sines);
};
}
var fourier_terms = ts
.select(band)
.map(_addDependents)
.map(_addHarmonics(harmonic_frequencies));
// The output of the regression reduction is a 4x1 array image.
var harmonic_trend = fourier_terms
.select(independents.add(band))
.reduce(ee.Reducer.linearRegression(independents.length(), 1));
// Turn the array image into a multi-band image of coefficients.
var harmonic_coefs = harmonic_trend.select('coefficients')
.arrayProject([0])
.arrayFlatten([independents]);
// Compute fitted values.
var fitted_harmonic = fourier_terms.map(function(image) {
return image.addBands(image.select(independents)
.multiply(harmonic_coefs)
.reduce('sum').int()
.rename('fitted'));
});
// Extract the fitted and original band
var predicted = fitted_harmonic.select(['fitted', band]);
// Sort chronologically in ascending order.
var series = predicted.sort('system:time_start', true);
// Get the timestamp from the most recent image in the reference collection.
var time0 = predicted.first().get('system:time_start');
// Create a first image with constant value
var first = ee.List([
// Rename the first band 'fitted'; second 'fittedp'.
ee.Image(0).set('system:time_start', time0).select([0], ['fitted'])
.addBands(ee.Image(0).select([0], ['fittedp']))
]);
// Copies the band value of the previous image to the current image and add it as band.
// The band is renamed to 'fittedp'.
// The image with its band value and the band value from previous image is added to the list.
function _accumulatep(image, list){
var previous = ee.Image(ee.List(list).get(-1)).select(['fitted'],['fittedp']);
var added = image.addBands(previous)
.set('system:time_start', image.get('system:time_start'));
return ee.List(list).add(added);
}
// Create an ImageCollection of images with the new band coppied from the previous image by iterating.
// Since the return type of iterate is unknown, it needs to be cast to a List.
var cumulativep0 = ee.ImageCollection(ee.List(series.iterate(_accumulatep, first)));
// Remove the first image as it contains the first image with the constant 0.
var cumulativep = cumulativep0.filter(ee.Filter.neq('system:index','0'));
// Sort chronologically in ascending order the new image collection with the current and previos image value.
var seriesn = cumulativep.sort('system:time_start', false);
// Get the timestamp from the most recent image in the reference collection.
var time0n = seriesn.first().get('system:time_start');
// Create a first image with constant value
var firstn = ee.List([
// Rename the first band 'fitted'.
ee.Image(0).set('system:time_start', time0n).select([0], ['fitted'])
.addBands(ee.Image(0).select([0], ['fittedp']))
.addBands(ee.Image(0).select([0], ['fittedn']))
]);
// Copies the band value of the next image to the current image and add it as band.
// The band is renamed to 'fittedn'.
// The image with its band value, the band value from previous and next images is added to the list.
function _accumulaten(image, list) {
var previous = ee.Image(ee.List(list).get(-1)).select(['fitted'],['fittedn']);
var added = image.addBands(previous)
.set('system:time_start', image.get('system:time_start'));
return ee.List(list).add(added);
}
// Create an ImageCollection of images with the new band copied from previous and next image by iterating.
// Since the return type of iterate is unknown, it needs to be cast to a List.
var cumulativepn00 = ee.ImageCollection(ee.List(seriesn.iterate(_accumulaten, firstn)));
var cumulative = cumulativepn00.filter(ee.Filter.neq('system:index','0')); // Remove, contains constant 0 image
cumulative = cumulative.sort('system:time_start', true); // Order the collection by ascending timestamps
return ee.ImageCollection(cumulative.toList(cumulative.size()));
};