-
Notifications
You must be signed in to change notification settings - Fork 50
/
Copy pathtest_audioset.py
48 lines (43 loc) · 1.46 KB
/
test_audioset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import unittest
import torchaudio
from torchaudio_augmentations import (
Compose,
RandomApply,
RandomResizedCrop,
PolarityInversion,
Noise,
Gain,
Delay,
PitchShift,
Reverb,
)
from clmr.datasets import AUDIO
class TestAudioSet(unittest.TestCase):
sample_rate = 16000
def get_audio_transforms(self, num_samples):
transform = Compose(
[
RandomResizedCrop(n_samples=num_samples),
RandomApply([PolarityInversion()], p=0.8),
RandomApply([Noise(min_snr=0.3, max_snr=0.5)], p=0.3),
RandomApply([Gain()], p=0.2),
RandomApply([Delay(sample_rate=self.sample_rate)], p=0.5),
RandomApply(
[PitchShift(n_samples=num_samples, sample_rate=self.sample_rate)],
p=0.4,
),
RandomApply([Reverb(sample_rate=self.sample_rate)], p=0.3),
]
)
return transform
def test_audioset(self):
audio_dataset = AUDIO("./tests/data/audioset")
audio, label = audio_dataset[0]
assert audio.shape[0] == 1
assert audio.shape[1] == 93680
num_samples = (
self.sample_rate * 5
) # the test item is approximately 5.8 seconds.
transform = self.get_audio_transforms(num_samples=num_samples)
audio = transform(audio)
torchaudio.save("augmented_sample.wav", audio, sample_rate=self.sample_rate)