-
Notifications
You must be signed in to change notification settings - Fork 4.3k
/
Copy pathGeneratorImpl.cs
341 lines (304 loc) · 12.3 KB
/
GeneratorImpl.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
using System.Collections.Generic;
using System;
using Unity.Barracuda;
using Unity.MLAgents.Inference.Utils;
using Unity.MLAgents.Sensors;
namespace Unity.MLAgents.Inference
{
/// <summary>
/// Reshapes a Tensor so that its first dimension becomes equal to the current batch size
/// and initializes its content to be zeros. Will only work on 2-dimensional tensors.
/// The second dimension of the Tensor will not be modified.
/// </summary>
internal class BiDimensionalOutputGenerator : TensorGenerator.IGenerator
{
readonly ITensorAllocator m_Allocator;
public BiDimensionalOutputGenerator(ITensorAllocator allocator)
{
m_Allocator = allocator;
}
public void Generate(TensorProxy tensorProxy, int batchSize, IList<AgentInfoSensorsPair> infos)
{
TensorUtils.ResizeTensor(tensorProxy, batchSize, m_Allocator);
}
}
/// <summary>
/// Generates the Tensor corresponding to the BatchSize input : Will be a one dimensional
/// integer array of size 1 containing the batch size.
/// </summary>
internal class BatchSizeGenerator : TensorGenerator.IGenerator
{
readonly ITensorAllocator m_Allocator;
public BatchSizeGenerator(ITensorAllocator allocator)
{
m_Allocator = allocator;
}
public void Generate(TensorProxy tensorProxy, int batchSize, IList<AgentInfoSensorsPair> infos)
{
tensorProxy.data?.Dispose();
tensorProxy.data = m_Allocator.Alloc(new TensorShape(1, 1));
tensorProxy.data[0] = batchSize;
}
}
/// <summary>
/// Generates the Tensor corresponding to the SequenceLength input : Will be a one
/// dimensional integer array of size 1 containing 1.
/// Note : the sequence length is always one since recurrent networks only predict for
/// one step at the time.
/// </summary>
internal class SequenceLengthGenerator : TensorGenerator.IGenerator
{
readonly ITensorAllocator m_Allocator;
public SequenceLengthGenerator(ITensorAllocator allocator)
{
m_Allocator = allocator;
}
public void Generate(TensorProxy tensorProxy, int batchSize, IList<AgentInfoSensorsPair> infos)
{
tensorProxy.shape = new long[0];
tensorProxy.data?.Dispose();
tensorProxy.data = m_Allocator.Alloc(new TensorShape(1, 1));
tensorProxy.data[0] = 1;
}
}
/// <summary>
/// Generates the Tensor corresponding to the Recurrent input : Will be a two
/// dimensional float array of dimension [batchSize x memorySize].
/// It will use the Memory data contained in the agentInfo to fill the data
/// of the tensor.
/// </summary>
internal class RecurrentInputGenerator : TensorGenerator.IGenerator
{
readonly ITensorAllocator m_Allocator;
Dictionary<int, List<float>> m_Memories;
public RecurrentInputGenerator(
ITensorAllocator allocator,
Dictionary<int, List<float>> memories)
{
m_Allocator = allocator;
m_Memories = memories;
}
public void Generate(
TensorProxy tensorProxy, int batchSize, IList<AgentInfoSensorsPair> infos)
{
TensorUtils.ResizeTensor(tensorProxy, batchSize, m_Allocator);
var memorySize = tensorProxy.data.width;
var agentIndex = 0;
for (var infoIndex = 0; infoIndex < infos.Count; infoIndex++)
{
var infoSensorPair = infos[infoIndex];
var info = infoSensorPair.agentInfo;
List<float> memory;
if (info.done)
{
m_Memories.Remove(info.episodeId);
}
if (!m_Memories.TryGetValue(info.episodeId, out memory))
{
for (var j = 0; j < memorySize; j++)
{
tensorProxy.data[agentIndex, 0, j, 0] = 0;
}
agentIndex++;
continue;
}
for (var j = 0; j < Math.Min(memorySize, memory.Count); j++)
{
if (j >= memory.Count)
{
break;
}
tensorProxy.data[agentIndex, 0, j, 0] = memory[j];
}
agentIndex++;
}
}
}
internal class BarracudaRecurrentInputGenerator : TensorGenerator.IGenerator
{
int m_MemoriesCount;
readonly int m_MemoryIndex;
readonly ITensorAllocator m_Allocator;
Dictionary<int, List<float>> m_Memories;
public BarracudaRecurrentInputGenerator(
int memoryIndex,
ITensorAllocator allocator,
Dictionary<int, List<float>> memories)
{
m_MemoryIndex = memoryIndex;
m_Allocator = allocator;
m_Memories = memories;
}
public void Generate(TensorProxy tensorProxy, int batchSize, IList<AgentInfoSensorsPair> infos)
{
TensorUtils.ResizeTensor(tensorProxy, batchSize, m_Allocator);
var memorySize = (int)tensorProxy.shape[tensorProxy.shape.Length - 1];
var agentIndex = 0;
for (var infoIndex = 0; infoIndex < infos.Count; infoIndex++)
{
var infoSensorPair = infos[infoIndex];
var info = infoSensorPair.agentInfo;
var offset = memorySize * m_MemoryIndex;
List<float> memory;
if (info.done)
{
m_Memories.Remove(info.episodeId);
}
if (!m_Memories.TryGetValue(info.episodeId, out memory))
{
for (var j = 0; j < memorySize; j++)
{
tensorProxy.data[agentIndex, j] = 0;
}
agentIndex++;
continue;
}
for (var j = 0; j < memorySize; j++)
{
if (j >= memory.Count)
{
break;
}
tensorProxy.data[agentIndex, j] = memory[j + offset];
}
agentIndex++;
}
}
}
/// <summary>
/// Generates the Tensor corresponding to the Previous Action input : Will be a two
/// dimensional integer array of dimension [batchSize x actionSize].
/// It will use the previous action data contained in the agentInfo to fill the data
/// of the tensor.
/// </summary>
internal class PreviousActionInputGenerator : TensorGenerator.IGenerator
{
readonly ITensorAllocator m_Allocator;
public PreviousActionInputGenerator(ITensorAllocator allocator)
{
m_Allocator = allocator;
}
public void Generate(TensorProxy tensorProxy, int batchSize, IList<AgentInfoSensorsPair> infos)
{
TensorUtils.ResizeTensor(tensorProxy, batchSize, m_Allocator);
var actionSize = tensorProxy.shape[tensorProxy.shape.Length - 1];
var agentIndex = 0;
for (var infoIndex = 0; infoIndex < infos.Count; infoIndex++)
{
var infoSensorPair = infos[infoIndex];
var info = infoSensorPair.agentInfo;
var pastAction = info.storedActions.DiscreteActions;
if (!pastAction.IsEmpty())
{
for (var j = 0; j < actionSize; j++)
{
tensorProxy.data[agentIndex, j] = pastAction[j];
}
}
agentIndex++;
}
}
}
/// <summary>
/// Generates the Tensor corresponding to the Action Mask input : Will be a two
/// dimensional float array of dimension [batchSize x numActionLogits].
/// It will use the Action Mask data contained in the agentInfo to fill the data
/// of the tensor.
/// </summary>
internal class ActionMaskInputGenerator : TensorGenerator.IGenerator
{
readonly ITensorAllocator m_Allocator;
public ActionMaskInputGenerator(ITensorAllocator allocator)
{
m_Allocator = allocator;
}
public void Generate(TensorProxy tensorProxy, int batchSize, IList<AgentInfoSensorsPair> infos)
{
TensorUtils.ResizeTensor(tensorProxy, batchSize, m_Allocator);
var maskSize = tensorProxy.shape[tensorProxy.shape.Length - 1];
var agentIndex = 0;
for (var infoIndex = 0; infoIndex < infos.Count; infoIndex++)
{
var infoSensorPair = infos[infoIndex];
var agentInfo = infoSensorPair.agentInfo;
var maskList = agentInfo.discreteActionMasks;
for (var j = 0; j < maskSize; j++)
{
var isUnmasked = (maskList != null && maskList[j]) ? 0.0f : 1.0f;
tensorProxy.data[agentIndex, j] = isUnmasked;
}
agentIndex++;
}
}
}
/// <summary>
/// Generates the Tensor corresponding to the Epsilon input : Will be a two
/// dimensional float array of dimension [batchSize x actionSize].
/// It will use the generate random input data from a normal Distribution.
/// </summary>
internal class RandomNormalInputGenerator : TensorGenerator.IGenerator
{
readonly RandomNormal m_RandomNormal;
readonly ITensorAllocator m_Allocator;
public RandomNormalInputGenerator(int seed, ITensorAllocator allocator)
{
m_RandomNormal = new RandomNormal(seed);
m_Allocator = allocator;
}
public void Generate(TensorProxy tensorProxy, int batchSize, IList<AgentInfoSensorsPair> infos)
{
TensorUtils.ResizeTensor(tensorProxy, batchSize, m_Allocator);
TensorUtils.FillTensorWithRandomNormal(tensorProxy, m_RandomNormal);
}
}
/// <summary>
/// Generates the Tensor corresponding to the Observation input : Will be a multi
/// dimensional float array.
/// It will use the Observation data contained in the sensors to fill the data
/// of the tensor.
/// </summary>
internal class ObservationGenerator : TensorGenerator.IGenerator
{
readonly ITensorAllocator m_Allocator;
List<int> m_SensorIndices = new List<int>();
ObservationWriter m_ObservationWriter = new ObservationWriter();
public ObservationGenerator(ITensorAllocator allocator)
{
m_Allocator = allocator;
}
public void AddSensorIndex(int sensorIndex)
{
m_SensorIndices.Add(sensorIndex);
}
public void Generate(TensorProxy tensorProxy, int batchSize, IList<AgentInfoSensorsPair> infos)
{
TensorUtils.ResizeTensor(tensorProxy, batchSize, m_Allocator);
var agentIndex = 0;
for (var infoIndex = 0; infoIndex < infos.Count; infoIndex++)
{
var info = infos[infoIndex];
if (info.agentInfo.done)
{
// If the agent is done, we might have a stale reference to the sensors
// e.g. a dependent object might have been disposed.
// To avoid this, just fill observation with zeroes instead of calling sensor.Write.
TensorUtils.FillTensorBatch(tensorProxy, agentIndex, 0.0f);
}
else
{
var tensorOffset = 0;
// Write each sensor consecutively to the tensor
for (var sensorIndexIndex = 0; sensorIndexIndex < m_SensorIndices.Count; sensorIndexIndex++)
{
var sensorIndex = m_SensorIndices[sensorIndexIndex];
var sensor = info.sensors[sensorIndex];
m_ObservationWriter.SetTarget(tensorProxy, agentIndex, tensorOffset);
var numWritten = sensor.Write(m_ObservationWriter);
tensorOffset += numWritten;
}
}
agentIndex++;
}
}
}
}