-
Notifications
You must be signed in to change notification settings - Fork 4.3k
/
Copy pathBoxOverlapChecker.cs
267 lines (238 loc) · 9.78 KB
/
BoxOverlapChecker.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
using System;
using UnityEngine;
namespace Unity.MLAgents.Sensors
{
internal class BoxOverlapChecker
{
Vector3 m_CellScale;
Vector3Int m_GridSize;
bool m_RotateWithAgent;
LayerMask m_ColliderMask;
GameObject m_RootReference;
string[] m_DetectableTags;
int m_InitialColliderBufferSize;
int m_MaxColliderBufferSize;
int m_NumCells;
Vector3 m_HalfCellScale;
Vector3 m_CellCenterOffset;
Vector3[] m_CellLocalPositions;
#if MLA_UNITY_PHYSICS_MODULE
Collider[] m_ColliderBuffer;
public event Action<GameObject, int> GridOverlapDetectedAll;
public event Action<GameObject, int> GridOverlapDetectedClosest;
public event Action<GameObject, int> GridOverlapDetectedDebug;
#endif
public BoxOverlapChecker(
Vector3 cellScale,
Vector3Int gridSize,
bool rotateWithAgent,
LayerMask colliderMask,
GameObject rootReference,
string[] detectableTags,
int initialColliderBufferSize,
int maxColliderBufferSize)
{
m_CellScale = cellScale;
m_GridSize = gridSize;
m_RotateWithAgent = rotateWithAgent;
m_ColliderMask = colliderMask;
m_RootReference = rootReference;
m_DetectableTags = detectableTags;
m_InitialColliderBufferSize = initialColliderBufferSize;
m_MaxColliderBufferSize = maxColliderBufferSize;
m_NumCells = gridSize.x * gridSize.z;
m_HalfCellScale = new Vector3(cellScale.x / 2f, cellScale.y, cellScale.z / 2f);
m_CellCenterOffset = new Vector3((gridSize.x - 1f) / 2, 0, (gridSize.z - 1f) / 2);
#if MLA_UNITY_PHYSICS_MODULE
m_ColliderBuffer = new Collider[Math.Min(m_MaxColliderBufferSize, m_InitialColliderBufferSize)];
#endif
InitCellLocalPositions();
}
public bool RotateWithAgent
{
get { return m_RotateWithAgent; }
set { m_RotateWithAgent = value; }
}
public LayerMask ColliderMask
{
get { return m_ColliderMask; }
set { m_ColliderMask = value; }
}
/// <summary>
/// Initializes the local location of the cells
/// </summary>
void InitCellLocalPositions()
{
m_CellLocalPositions = new Vector3[m_NumCells];
for (int i = 0; i < m_NumCells; i++)
{
m_CellLocalPositions[i] = GetCellLocalPosition(i);
}
}
/// <summary>Converts the index of the cell to the 3D point (y is zero) relative to grid center</summary>
/// <returns>Vector3 of the position of the center of the cell relative to grid center</returns>
/// <param name="cellIndex">The index of the cell</param>
Vector3 GetCellLocalPosition(int cellIndex)
{
float x = (cellIndex / m_GridSize.z - m_CellCenterOffset.x) * m_CellScale.x;
float z = (cellIndex % m_GridSize.z - m_CellCenterOffset.z) * m_CellScale.z;
return new Vector3(x, 0, z);
}
internal Vector3 GetCellGlobalPosition(int cellIndex)
{
if (m_RotateWithAgent)
{
return m_RootReference.transform.TransformPoint(m_CellLocalPositions[cellIndex]);
}
else
{
return m_CellLocalPositions[cellIndex] + m_RootReference.transform.position;
}
}
internal Quaternion GetGridRotation()
{
return m_RotateWithAgent ? m_RootReference.transform.rotation : Quaternion.identity;
}
/// <summary>
/// Perceive the latest grid status. Call OverlapBoxNonAlloc once to detect colliders.
/// Then parse the collider arrays according to all available gridSensor delegates.
/// </summary>
internal void Update()
{
#if MLA_UNITY_PHYSICS_MODULE
for (var cellIndex = 0; cellIndex < m_NumCells; cellIndex++)
{
var cellCenter = GetCellGlobalPosition(cellIndex);
var numFound = BufferResizingOverlapBoxNonAlloc(cellCenter, m_HalfCellScale, GetGridRotation());
if (GridOverlapDetectedAll != null)
{
ParseCollidersAll(m_ColliderBuffer, numFound, cellIndex, cellCenter, GridOverlapDetectedAll);
}
if (GridOverlapDetectedClosest != null)
{
ParseCollidersClosest(m_ColliderBuffer, numFound, cellIndex, cellCenter, GridOverlapDetectedClosest);
}
}
#endif
}
/// <summary>
/// Same as Update(), but only load data for debug gizmo.
/// </summary>
internal void UpdateGizmo()
{
#if MLA_UNITY_PHYSICS_MODULE
for (var cellIndex = 0; cellIndex < m_NumCells; cellIndex++)
{
var cellCenter = GetCellGlobalPosition(cellIndex);
var numFound = BufferResizingOverlapBoxNonAlloc(cellCenter, m_HalfCellScale, GetGridRotation());
ParseCollidersClosest(m_ColliderBuffer, numFound, cellIndex, cellCenter, GridOverlapDetectedDebug);
}
#endif
}
#if MLA_UNITY_PHYSICS_MODULE
/// <summary>
/// This method attempts to perform the Physics.OverlapBoxNonAlloc and will double the size of the Collider buffer
/// if the number of Colliders in the buffer after the call is equal to the length of the buffer.
/// </summary>
/// <param name="cellCenter"></param>
/// <param name="halfCellScale"></param>
/// <param name="rotation"></param>
/// <returns></returns>
int BufferResizingOverlapBoxNonAlloc(Vector3 cellCenter, Vector3 halfCellScale, Quaternion rotation)
{
int numFound;
// Since we can only get a fixed number of results, requery
// until we're sure we can hold them all (or until we hit the max size).
while (true)
{
numFound = Physics.OverlapBoxNonAlloc(cellCenter, halfCellScale, m_ColliderBuffer, rotation, m_ColliderMask);
if (numFound == m_ColliderBuffer.Length && m_ColliderBuffer.Length < m_MaxColliderBufferSize)
{
m_ColliderBuffer = new Collider[Math.Min(m_MaxColliderBufferSize, m_ColliderBuffer.Length * 2)];
m_InitialColliderBufferSize = m_ColliderBuffer.Length;
}
else
{
break;
}
}
return numFound;
}
/// <summary>
/// Parses the array of colliders found within a cell. Finds the closest gameobject to the agent root reference within the cell
/// </summary>
void ParseCollidersClosest(Collider[] foundColliders, int numFound, int cellIndex, Vector3 cellCenter, Action<GameObject, int> detectedAction)
{
GameObject closestColliderGo = null;
var minDistanceSquared = float.MaxValue;
for (var i = 0; i < numFound; i++)
{
var currentColliderGo = foundColliders[i].gameObject;
// Continue if the current collider go is the root reference
if (ReferenceEquals(currentColliderGo, m_RootReference))
{
continue;
}
var closestColliderPoint = foundColliders[i].ClosestPointOnBounds(cellCenter);
var currentDistanceSquared = (closestColliderPoint - m_RootReference.transform.position).sqrMagnitude;
if (currentDistanceSquared >= minDistanceSquared)
{
continue;
}
// Checks if our colliders contain a detectable object
var index = -1;
for (var ii = 0; ii < m_DetectableTags.Length; ii++)
{
if (currentColliderGo.CompareTag(m_DetectableTags[ii]))
{
index = ii;
break;
}
}
if (index > -1 && currentDistanceSquared < minDistanceSquared)
{
minDistanceSquared = currentDistanceSquared;
closestColliderGo = currentColliderGo;
}
}
if (!ReferenceEquals(closestColliderGo, null))
{
detectedAction.Invoke(closestColliderGo, cellIndex);
}
}
/// <summary>
/// Parses all colliders in the array of colliders found within a cell.
/// </summary>
void ParseCollidersAll(Collider[] foundColliders, int numFound, int cellIndex, Vector3 cellCenter, Action<GameObject, int> detectedAction)
{
for (int i = 0; i < numFound; i++)
{
var currentColliderGo = foundColliders[i].gameObject;
if (!ReferenceEquals(currentColliderGo, m_RootReference))
{
detectedAction.Invoke(currentColliderGo, cellIndex);
}
}
}
#endif
internal void RegisterSensor(GridSensorBase sensor)
{
#if MLA_UNITY_PHYSICS_MODULE
if (sensor.GetProcessCollidersMethod() == ProcessCollidersMethod.ProcessAllColliders)
{
GridOverlapDetectedAll += sensor.ProcessDetectedObject;
}
else
{
GridOverlapDetectedClosest += sensor.ProcessDetectedObject;
}
#endif
}
internal void RegisterDebugSensor(GridSensorBase debugSensor)
{
#if MLA_UNITY_PHYSICS_MODULE
GridOverlapDetectedDebug += debugSensor.ProcessDetectedObject;
#endif
}
}
}