-
Notifications
You must be signed in to change notification settings - Fork 2k
/
Copy pathhmm.py
238 lines (190 loc) · 5.9 KB
/
hmm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
# encoding=utf8
import numpy as np
import csv
class HMM(object):
def __init__(self,N,M):
self.A = np.zeros((N,N)) # 状态转移概率矩阵
self.B = np.zeros((N,M)) # 观测概率矩阵
self.Pi = np.array([1.0/N]*N) # 初始状态概率矩阵
self.N = N # 可能的状态数
self.M = M # 可能的观测数
def cal_probality(self, O):
self.T = len(O)
self.O = O
self.forward()
return sum(self.alpha[self.T-1])
def forward(self):
"""
前向算法
"""
self.alpha = np.zeros((self.T,self.N))
# 公式 10.15
for i in range(self.N):
self.alpha[0][i] = self.Pi[i]*self.B[i][self.O[0]]
# 公式10.16
for t in range(1,self.T):
for i in range(self.N):
sum = 0
for j in range(self.N):
sum += self.alpha[t-1][j]*self.A[j][i]
self.alpha[t][i] = sum * self.B[i][self.O[t]]
def backward(self):
"""
后向算法
"""
self.beta = np.zeros((self.T,self.N))
# 公式10.19
for i in range(self.N):
self.beta[self.T-1][i] = 1
# 公式10.20
for t in range(self.T-2,-1,-1):
for i in range(self.N):
for j in range(self.N):
self.beta[t][i] += self.A[i][j]*self.B[j][self.O[t+1]]*self.beta[t+1][j]
def cal_gamma(self, i, t):
"""
公式 10.24
"""
numerator = self.alpha[t][i]*self.beta[t][i]
denominator = 0
for j in range(self.N):
denominator += self.alpha[t][j]*self.beta[t][j]
return numerator/denominator
def cal_ksi(self, i, j, t):
"""
公式 10.26
"""
numerator = self.alpha[t][i]*self.A[i][j]*self.B[j][self.O[t+1]]*self.beta[t+1][j]
denominator = 0
for i in range(self.N):
for j in range(self.N):
denominator += self.alpha[t][i]*self.A[i][j]*self.B[j][self.O[t+1]]*self.beta[t+1][j]
return numerator/denominator
def init(self):
"""
随机生成 A,B,Pi
并保证每行相加等于 1
"""
import random
for i in range(self.N):
randomlist = [random.randint(0,100) for t in range(self.N)]
Sum = sum(randomlist)
for j in range(self.N):
self.A[i][j] = randomlist[j]/Sum
for i in range(self.N):
randomlist = [random.randint(0,100) for t in range(self.M)]
Sum = sum(randomlist)
for j in range(self.M):
self.B[i][j] = randomlist[j]/Sum
def train(self, O, MaxSteps = 100):
self.T = len(O)
self.O = O
# 初始化
self.init()
step = 0
# 递推
while step<MaxSteps:
step+=1
print(step)
tmp_A = np.zeros((self.N,self.N))
tmp_B = np.zeros((self.N,self.M))
tmp_pi = np.array([0.0]*self.N)
self.forward()
self.backward()
# a_{ij}
for i in range(self.N):
for j in range(self.N):
numerator=0.0
denominator=0.0
for t in range(self.T-1):
numerator += self.cal_ksi(i,j,t)
denominator += self.cal_gamma(i,t)
tmp_A[i][j] = numerator/denominator
# b_{jk}
for j in range(self.N):
for k in range(self.M):
numerator = 0.0
denominator = 0.0
for t in range(self.T):
if k == self.O[t]:
numerator += self.cal_gamma(j,t)
denominator += self.cal_gamma(j,t)
tmp_B[j][k] = numerator / denominator
# pi_i
for i in range(self.N):
tmp_pi[i] = self.cal_gamma(i,0)
self.A = tmp_A
self.B = tmp_B
self.Pi = tmp_pi
def generate(self, length):
import random
I = []
# start
ran = random.randint(0,1000)/1000.0
i = 0
while self.Pi[i]<ran or self.Pi[i]<0.0001:
ran -= self.Pi[i]
i += 1
I.append(i)
# 生成状态序列
for i in range(1,length):
last = I[-1]
ran = random.randint(0, 1000) / 1000.0
i = 0
while self.A[last][i] < ran or self.A[last][i]<0.0001:
ran -= self.A[last][i]
i += 1
I.append(i)
# 生成观测序列
Y = []
for i in range(length):
k = 0
ran = random.randint(0, 1000) / 1000.0
while self.B[I[i]][k] < ran or self.B[I[i]][k]<0.0001:
ran -= self.B[I[i]][k]
k += 1
Y.append(k)
return Y
def triangle(length):
'''
三角波
'''
X = [i for i in range(length)]
Y = []
for x in X:
x = x % 6
if x <= 3:
Y.append(x)
else:
Y.append(6-x)
return X,Y
def sin(length):
'''
三角波
'''
import math
X = [i for i in range(length)]
Y = []
for x in X:
x = x % 20
Y.append(int(math.sin((x*math.pi)/10)*50)+50)
return X,Y
def show_data(x,y):
import matplotlib.pyplot as plt
plt.plot(x, y, 'g')
plt.show()
return y
if __name__ == '__main__':
hmm = HMM(10,4)
tri_x, tri_y = triangle(20)
hmm.train(tri_y)
y = hmm.generate(100)
x = [i for i in range(100)]
show_data(x,y)
# hmm = HMM(15,101)
# sin_x, sin_y = sin(40)
# show_data(sin_x, sin_y)
# hmm.train(sin_y)
# y = hmm.generate(100)
# x = [i for i in range(100)]
# show_data(x,y)