Skip to content

Commit 25e644a

Browse files
committed
perceptron
1 parent 6b4dae2 commit 25e644a

23 files changed

+140839
-0
lines changed

.idea/encodings.xml

+6
Some generated files are not rendered by default. Learn more about customizing how changed files appear on GitHub.

.idea/misc.xml

+14
Some generated files are not rendered by default. Learn more about customizing how changed files appear on GitHub.

.idea/mnist_test.iml

+8
Some generated files are not rendered by default. Learn more about customizing how changed files appear on GitHub.

.idea/modules.xml

+8
Some generated files are not rendered by default. Learn more about customizing how changed files appear on GitHub.

.idea/workspace.xml

+43
Some generated files are not rendered by default. Learn more about customizing how changed files appear on GitHub.

binary_svm.py

+55
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,55 @@
1+
import pandas as pd
2+
import numpy as np
3+
import csv as csv
4+
import cv2
5+
6+
from sklearn.neighbors import KNeighborsClassifier
7+
from sklearn.decomposition import RandomizedPCA
8+
from sklearn.cross_validation import train_test_split
9+
from sklearn.metrics import accuracy_score
10+
from sklearn import svm
11+
12+
def get_hog_features(trainset):
13+
features = []
14+
15+
hog = cv2.HOGDescriptor('hog.xml')
16+
17+
for img in trainset:
18+
img = np.reshape(img,(28,28))
19+
cv_img = img.astype(np.uint8)
20+
21+
hog_feature = hog.compute(cv_img)
22+
# hog_feature = np.transpose(hog_feature)
23+
features.append(hog_feature)
24+
25+
features = np.array(features)
26+
features = np.reshape(features,(-1,324))
27+
print features.shape
28+
return features
29+
30+
train_raw=pd.read_csv('data/train_binary.csv',header=0)
31+
train = train_raw.values
32+
33+
34+
print 'Start PCA to 50'
35+
train_x=train[0::,1::]
36+
train_label=train[::,0]
37+
38+
features = get_hog_features(train_x)
39+
40+
# # pca
41+
# pca = RandomizedPCA(n_components=50, whiten=True).fit(train_x)
42+
# train_x_pca = pca.transform(train_x)
43+
# test_x_pca = pca.transform(test)
44+
# print train_x
45+
a_train, b_train, a_label, b_label = train_test_split(features, train_label, test_size=0.33, random_state=23323)
46+
print a_train.shape
47+
print a_label.shape
48+
49+
print 'Start training'
50+
rbf_svc = svm.SVC(kernel='rbf')
51+
rbf_svc.fit(a_train,a_label)
52+
print 'Start predicting'
53+
b_predict=rbf_svc.predict(b_train)
54+
score=accuracy_score(b_label,b_predict)
55+
print "The accruacy socre is ", score

0 commit comments

Comments
 (0)