Skip to content

Commit b7ee657

Browse files
committed
add mnist test
1 parent e8b0422 commit b7ee657

File tree

1 file changed

+27
-4
lines changed

1 file changed

+27
-4
lines changed

AdaBoost/adaboost.py

+27-4
Original file line numberDiff line numberDiff line change
@@ -100,7 +100,7 @@ def _init_parameters_(self,features,labels):
100100

101101
self.n = len(features[0])
102102
self.N = len(features)
103-
self.M = 10000 # 分类器数目
103+
self.M = 100000 # 分类器数目
104104

105105
self.w = [1.0/self.N]*self.N
106106
self.alpha = []
@@ -170,11 +170,34 @@ def predict(self,features):
170170
return results
171171

172172
if __name__ == '__main__':
173-
features = [[0],[1],[2],[3],[4],[5],[6],[7],[8],[9]]
174-
labels = [1,1,1,-1,-1,-1,1,1,1,-1]
173+
print 'Start read data'
175174

175+
time_1 = time.time()
176176

177+
raw_data = pd.read_csv('../data/train_binary.csv',header=0)
178+
data = raw_data.values
177179

180+
imgs = data[0::,1::]
181+
labels = data[::,0]
178182

183+
184+
# 选取 2/3 数据作为训练集, 1/3 数据作为测试集
185+
train_features, test_features, train_labels, test_labels = train_test_split(imgs, labels, test_size=0.33, random_state=23323)
186+
187+
time_2 = time.time()
188+
print 'read data cost ',time_2 - time_1,' second','\n'
189+
190+
print 'Start training'
179191
ada = AdaBoost()
180-
ada.train(features,labels)
192+
ada.train(train_features, train_labels)
193+
194+
time_3 = time.time()
195+
print 'training cost ',time_3 - time_2,' second','\n'
196+
197+
print 'Start predicting'
198+
test_predict = ada.predict(test_features)
199+
time_4 = time.time()
200+
print 'predicting cost ',time_4 - time_3,' second','\n'
201+
202+
score = accuracy_score(test_labels,test_predict)
203+
print "The accruacy socre is ", score

0 commit comments

Comments
 (0)