Skip to content

Latest commit

 

History

History
 
 

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 

YOLOv5Cls C++部署示例

本目录下提供infer.cc快速完成YOLOv5Cls在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。

在部署前,需确认以下两个步骤

以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试,支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0)

mkdir build
cd build
# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
tar xvf fastdeploy-linux-x64-x.x.x.tgz
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
make -j

#下载官方转换好的yolov5模型文件和测试图片
wget https://bj.bcebos.com/paddlehub/fastdeploy/yolov5n-cls.onnx
wget https://gitee.com/paddlepaddle/PaddleClas/raw/release/2.4/deploy/images/ImageNet/ILSVRC2012_val_00000010.jpeg


# CPU推理
./infer_demo yolov5n-cls.onnx 000000014439.jpg 0
# GPU推理
./infer_demo yolov5n-cls.onnx 000000014439.jpg 1
# GPU上TensorRT推理
./infer_demo yolov5n-cls.onnx 000000014439.jpg 2

运行完成后返回结果如下所示

ClassifyResult(
label_ids: 265,
scores: 0.196327,
)

以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考:

YOLOv5Cls C++接口

YOLOv5Cls类

fastdeploy::vision::classification::YOLOv5Cls(
        const string& model_file,
        const string& params_file = "",
        const RuntimeOption& runtime_option = RuntimeOption(),
        const ModelFormat& model_format = ModelFormat::ONNX)

YOLOv5Cls模型加载和初始化,其中model_file为导出的ONNX模型格式。

参数

  • model_file(str): 模型文件路径
  • params_file(str): 参数文件路径,当模型格式为ONNX时,此参数传入空字符串即可
  • runtime_option(RuntimeOption): 后端推理配置,默认为None,即采用默认配置
  • model_format(ModelFormat): 模型格式,默认为ONNX格式

Predict函数

YOLOv5Cls::Predict(cv::Mat* im, int topk = 1)

模型预测接口,输入图像直接输出输出分类topk结果。

参数

  • input_image(np.ndarray): 输入数据,注意需为HWC,BGR格式
  • topk(int):返回预测概率最高的topk个分类结果,默认为1

返回

返回fastdeploy.vision.ClassifyResult结构体,结构体说明参考文档视觉模型预测结果

其它文档