@@ -58,6 +58,7 @@ def _avg_scaling(self):
58
58
else :
59
59
return self .kernel_size * self .kernel_size
60
60
61
+ # TODO: Replace with functional call
61
62
def forward (self , input : Union [Tensor , QuantTensor ]):
62
63
x = self .unpack_input (input )
63
64
@@ -71,8 +72,6 @@ def forward(self, input: Union[Tensor, QuantTensor]):
71
72
if not isinstance (x , QuantTensor ):
72
73
x = self .cache_class .quant_tensor .set (value = x )
73
74
y = AvgPool2d .forward (self , x )
74
- rescaled_value = y .value * self ._avg_scaling
75
- y = y .set (value = rescaled_value )
76
75
y = self .trunc_quant (y )
77
76
else :
78
77
y = AvgPool2d .forward (self , _unpack_quant_tensor (x ))
@@ -123,6 +122,7 @@ def compute_kernel_size_stride(input_shape, output_shape):
123
122
stride_list .append (stride )
124
123
return kernel_size_list , stride_list
125
124
125
+ # TODO: Replace with functional call
126
126
def forward (self , input : Union [Tensor , QuantTensor ]):
127
127
x = self .unpack_input (input )
128
128
@@ -139,10 +139,6 @@ def forward(self, input: Union[Tensor, QuantTensor]):
139
139
if not isinstance (x , QuantTensor ):
140
140
x = self .cache_class .quant_tensor .set (value = x )
141
141
y = AdaptiveAvgPool2d .forward (self , x )
142
- k_size , stride = self .compute_kernel_size_stride (x .value .shape [2 :], y .value .shape [2 :])
143
- reduce_size = reduce (mul , k_size , 1 )
144
- rescaled_value = y .value * reduce_size # remove avg scaling
145
- y = y .set (value = rescaled_value )
146
142
y = self .trunc_quant (y )
147
143
else :
148
144
y = AdaptiveAvgPool2d .forward (self , _unpack_quant_tensor (x ))
0 commit comments