-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathflows.py
33 lines (29 loc) · 848 Bytes
/
flows.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import torch
import torch.nn as nn
import numpy as np
from transforms import *
class PlanarFlow(nn.Module):
def __init__(self, dim=20, K=16):
super().__init__()
self.transforms = nn.ModuleList([PlanarTransform(dim) for k in range(K)])
def forward(self, z, logdet=False):
zK = z
SLDJ = 0.
for transform in self.transforms:
out = transform(zK, logdet=logdet)
if logdet:
SLDJ += out[1]
zK = out[0]
else:
zK = out
if logdet:
return zK, SLDJ
return zK
if __name__ == '__main__':
planar = PlanarFlow(dim=5, K=4)
print([p.size() for p in planar.parameters()])
planar.cuda()
z0 = torch.randn(3, 5).cuda()
z0 = z0*4
print(z0)
print(planar(z0, True))