-
Notifications
You must be signed in to change notification settings - Fork 246
/
Copy pathPropositional.agda
53 lines (42 loc) · 1.78 KB
/
Propositional.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
------------------------------------------------------------------------
-- The Agda standard library
--
-- Relationships between properties of functions where the equality
-- over both the domain and codomain is assumed to be _≡_
------------------------------------------------------------------------
{-# OPTIONS --cubical-compatible --safe #-}
module Function.Consequences.Propositional
{a b} {A : Set a} {B : Set b}
where
open import Relation.Binary.PropositionalEquality.Core using (_≡_; _≢_; cong)
open import Relation.Binary.PropositionalEquality.Properties
using (setoid)
open import Function.Definitions
open import Relation.Nullary.Negation.Core using (contraposition)
import Function.Consequences.Setoid (setoid A) (setoid B) as Setoid
------------------------------------------------------------------------
-- Re-export setoid properties
open Setoid public
hiding
( strictlySurjective⇒surjective
; strictlyInverseˡ⇒inverseˡ
; strictlyInverseʳ⇒inverseʳ
)
------------------------------------------------------------------------
-- Properties that rely on congruence
private
variable
f : A → B
f⁻¹ : B → A
strictlySurjective⇒surjective : StrictlySurjective _≡_ f →
Surjective _≡_ _≡_ f
strictlySurjective⇒surjective =
Setoid.strictlySurjective⇒surjective (cong _)
strictlyInverseˡ⇒inverseˡ : ∀ f → StrictlyInverseˡ _≡_ f f⁻¹ →
Inverseˡ _≡_ _≡_ f f⁻¹
strictlyInverseˡ⇒inverseˡ f =
Setoid.strictlyInverseˡ⇒inverseˡ (cong _)
strictlyInverseʳ⇒inverseʳ : ∀ f → StrictlyInverseʳ _≡_ f f⁻¹ →
Inverseʳ _≡_ _≡_ f f⁻¹
strictlyInverseʳ⇒inverseʳ f =
Setoid.strictlyInverseʳ⇒inverseʳ (cong _)