-
Notifications
You must be signed in to change notification settings - Fork 247
/
Copy pathProperties.agda
548 lines (465 loc) · 19.1 KB
/
Properties.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
------------------------------------------------------------------------
-- The Agda standard library
--
-- Some properties about integers
------------------------------------------------------------------------
module Data.Integer.Properties where
open import Algebra
import Algebra.FunctionProperties
import Algebra.Morphism as Morphism
import Algebra.Properties.AbelianGroup
open import Algebra.Structures
open import Data.Integer hiding (suc; _≤?_)
open import Data.Nat
using (ℕ; suc; zero; _∸_; _≤?_; _<_; _≥_; _≰_; s≤s; z≤n; ≤-pred)
hiding (module ℕ)
renaming (_+_ to _ℕ+_; _*_ to _ℕ*_)
open import Data.Nat.Properties as ℕ using (≤-refl)
open import Data.Product using (proj₁; proj₂; _,_)
open import Data.Sign as Sign using () renaming (_*_ to _𝕊*_)
import Data.Sign.Properties as 𝕊
open import Function using (_∘_; _$_)
open import Relation.Binary
open import Relation.Binary.PropositionalEquality
open import Relation.Nullary using (yes; no)
open import Relation.Nullary.Negation using (contradiction)
open Algebra.FunctionProperties (_≡_ {A = ℤ})
open Morphism.Definitions ℤ ℕ _≡_
open ℕ.SemiringSolver
open ≡-Reasoning
------------------------------------------------------------------------
-- Properties of sign and _◃_
+◃n≡+n : ∀ n → Sign.+ ◃ n ≡ + n
+◃n≡+n zero = refl
+◃n≡+n (suc _) = refl
-◃n≡-n : ∀ n → Sign.- ◃ n ≡ - + n
-◃n≡-n zero = refl
-◃n≡-n (suc _) = refl
sign-◃ : ∀ s n → sign (s ◃ suc n) ≡ s
sign-◃ Sign.- _ = refl
sign-◃ Sign.+ _ = refl
abs-◃ : ∀ s n → ∣ s ◃ n ∣ ≡ n
abs-◃ _ zero = refl
abs-◃ Sign.- (suc n) = refl
abs-◃ Sign.+ (suc n) = refl
signₙ◃∣n∣≡n : ∀ n → sign n ◃ ∣ n ∣ ≡ n
signₙ◃∣n∣≡n (+ n) = +◃n≡+n n
signₙ◃∣n∣≡n (-[1+ n ]) = refl
sign-cong : ∀ {s₁ s₂ n₁ n₂} →
s₁ ◃ suc n₁ ≡ s₂ ◃ suc n₂ → s₁ ≡ s₂
sign-cong {s₁} {s₂} {n₁} {n₂} eq = begin
s₁ ≡⟨ sym $ sign-◃ s₁ n₁ ⟩
sign (s₁ ◃ suc n₁) ≡⟨ cong sign eq ⟩
sign (s₂ ◃ suc n₂) ≡⟨ sign-◃ s₂ n₂ ⟩
s₂ ∎
abs-cong : ∀ {s₁ s₂ n₁ n₂} →
s₁ ◃ n₁ ≡ s₂ ◃ n₂ → n₁ ≡ n₂
abs-cong {s₁} {s₂} {n₁} {n₂} eq = begin
n₁ ≡⟨ sym $ abs-◃ s₁ n₁ ⟩
∣ s₁ ◃ n₁ ∣ ≡⟨ cong ∣_∣ eq ⟩
∣ s₂ ◃ n₂ ∣ ≡⟨ abs-◃ s₂ n₂ ⟩
n₂ ∎
------------------------------------------------------------------------
-- Properties of _⊖_
n⊖n≡0 : ∀ n → n ⊖ n ≡ + 0
n⊖n≡0 zero = refl
n⊖n≡0 (suc n) = n⊖n≡0 n
⊖-swap : ∀ a b → a ⊖ b ≡ - (b ⊖ a)
⊖-swap zero zero = refl
⊖-swap (suc _) zero = refl
⊖-swap zero (suc _) = refl
⊖-swap (suc a) (suc b) = ⊖-swap a b
⊖-≥ : ∀ {m n} → m ≥ n → m ⊖ n ≡ + (m ∸ n)
⊖-≥ z≤n = refl
⊖-≥ (s≤s n≤m) = ⊖-≥ n≤m
⊖-< : ∀ {m n} → m < n → m ⊖ n ≡ - + (n ∸ m)
⊖-< {zero} (s≤s z≤n) = refl
⊖-< {suc m} (s≤s m<n) = ⊖-< m<n
⊖-≰ : ∀ {m n} → n ≰ m → m ⊖ n ≡ - + (n ∸ m)
⊖-≰ = ⊖-< ∘ ℕ.≰⇒>
∣⊖∣-< : ∀ {m n} → m < n → ∣ m ⊖ n ∣ ≡ n ∸ m
∣⊖∣-< {zero} (s≤s z≤n) = refl
∣⊖∣-< {suc n} (s≤s m<n) = ∣⊖∣-< m<n
∣⊖∣-≰ : ∀ {m n} → n ≰ m → ∣ m ⊖ n ∣ ≡ n ∸ m
∣⊖∣-≰ = ∣⊖∣-< ∘ ℕ.≰⇒>
sign-⊖-< : ∀ {m n} → m < n → sign (m ⊖ n) ≡ Sign.-
sign-⊖-< {zero} (s≤s z≤n) = refl
sign-⊖-< {suc n} (s≤s m<n) = sign-⊖-< m<n
sign-⊖-≰ : ∀ {m n} → n ≰ m → sign (m ⊖ n) ≡ Sign.-
sign-⊖-≰ = sign-⊖-< ∘ ℕ.≰⇒>
+-⊖-left-cancel : ∀ a b c → (a ℕ+ b) ⊖ (a ℕ+ c) ≡ b ⊖ c
+-⊖-left-cancel zero b c = refl
+-⊖-left-cancel (suc a) b c = +-⊖-left-cancel a b c
------------------------------------------------------------------------
-- Properties of _+_
+-comm : Commutative _+_
+-comm -[1+ a ] -[1+ b ] rewrite ℕ.+-comm a b = refl
+-comm (+ a ) (+ b ) rewrite ℕ.+-comm a b = refl
+-comm -[1+ _ ] (+ _ ) = refl
+-comm (+ _ ) -[1+ _ ] = refl
+-identityˡ : LeftIdentity (+ 0) _+_
+-identityˡ -[1+ _ ] = refl
+-identityˡ (+ _ ) = refl
+-identityʳ : RightIdentity (+ 0) _+_
+-identityʳ x rewrite +-comm x (+ 0) = +-identityˡ x
+-identity : Identity (+ 0) _+_
+-identity = +-identityˡ , +-identityʳ
distribˡ-⊖-+-neg : ∀ a b c → b ⊖ c + -[1+ a ] ≡ b ⊖ (suc c ℕ+ a)
distribˡ-⊖-+-neg _ zero zero = refl
distribˡ-⊖-+-neg _ zero (suc _) = refl
distribˡ-⊖-+-neg _ (suc _) zero = refl
distribˡ-⊖-+-neg a (suc b) (suc c) = distribˡ-⊖-+-neg a b c
distribʳ-⊖-+-neg : ∀ a b c → -[1+ a ] + (b ⊖ c) ≡ b ⊖ (suc a ℕ+ c)
distribʳ-⊖-+-neg a b c
rewrite +-comm -[1+ a ] (b ⊖ c)
| distribˡ-⊖-+-neg a b c
| ℕ.+-comm a c
= refl
distribˡ-⊖-+-pos : ∀ a b c → b ⊖ c + + a ≡ b ℕ+ a ⊖ c
distribˡ-⊖-+-pos _ zero zero = refl
distribˡ-⊖-+-pos _ zero (suc _) = refl
distribˡ-⊖-+-pos _ (suc _) zero = refl
distribˡ-⊖-+-pos a (suc b) (suc c) = distribˡ-⊖-+-pos a b c
distribʳ-⊖-+-pos : ∀ a b c → + a + (b ⊖ c) ≡ a ℕ+ b ⊖ c
distribʳ-⊖-+-pos a b c
rewrite +-comm (+ a) (b ⊖ c)
| distribˡ-⊖-+-pos a b c
| ℕ.+-comm a b
= refl
+-assoc : Associative _+_
+-assoc (+ zero) y z rewrite +-identityˡ y | +-identityˡ (y + z) = refl
+-assoc x (+ zero) z rewrite +-identityʳ x | +-identityˡ z = refl
+-assoc x y (+ zero) rewrite +-identityʳ (x + y) | +-identityʳ y = refl
+-assoc -[1+ a ] -[1+ b ] (+ suc c) = sym (distribʳ-⊖-+-neg a c b)
+-assoc -[1+ a ] (+ suc b) (+ suc c) = distribˡ-⊖-+-pos (suc c) b a
+-assoc (+ suc a) -[1+ b ] -[1+ c ] = distribˡ-⊖-+-neg c a b
+-assoc (+ suc a) -[1+ b ] (+ suc c)
rewrite distribˡ-⊖-+-pos (suc c) a b
| distribʳ-⊖-+-pos (suc a) c b
| sym (ℕ.+-assoc a 1 c)
| ℕ.+-comm a 1
= refl
+-assoc (+ suc a) (+ suc b) -[1+ c ]
rewrite distribʳ-⊖-+-pos (suc a) b c
| sym (ℕ.+-assoc a 1 b)
| ℕ.+-comm a 1
= refl
+-assoc -[1+ a ] -[1+ b ] -[1+ c ]
rewrite sym (ℕ.+-assoc a 1 (b ℕ+ c))
| ℕ.+-comm a 1
| ℕ.+-assoc a b c
= refl
+-assoc -[1+ a ] (+ suc b) -[1+ c ]
rewrite distribʳ-⊖-+-neg a b c
| distribˡ-⊖-+-neg c b a
= refl
+-assoc (+ suc a) (+ suc b) (+ suc c)
rewrite ℕ.+-assoc (suc a) (suc b) (suc c)
= refl
inverseˡ : LeftInverse (+ 0) -_ _+_
inverseˡ -[1+ n ] = n⊖n≡0 n
inverseˡ (+ zero) = refl
inverseˡ (+ suc n) = n⊖n≡0 n
inverseʳ : RightInverse (+ 0) -_ _+_
inverseʳ i = begin
i + - i ≡⟨ +-comm i (- i) ⟩
- i + i ≡⟨ inverseˡ i ⟩
+ 0 ∎
+-isSemigroup : IsSemigroup _≡_ _+_
+-isSemigroup = record
{ isEquivalence = isEquivalence
; assoc = +-assoc
; ∙-cong = cong₂ _+_
}
+-0-isMonoid : IsMonoid _≡_ _+_ (+ 0)
+-0-isMonoid = record
{ isSemigroup = +-isSemigroup
; identity = +-identity
}
+-0-isCommutativeMonoid : IsCommutativeMonoid _≡_ _+_ (+ 0)
+-0-isCommutativeMonoid = record
{ isSemigroup = +-isSemigroup
; identityˡ = +-identityˡ
; comm = +-comm
}
+-0-commutativeMonoid : CommutativeMonoid _ _
+-0-commutativeMonoid = record
{ Carrier = ℤ
; _≈_ = _≡_
; _∙_ = _+_
; ε = + 0
; isCommutativeMonoid = +-0-isCommutativeMonoid
}
+-0-isGroup : IsGroup _≡_ _+_ (+ 0) (-_)
+-0-isGroup = record
{ isMonoid = +-0-isMonoid
; inverse = inverseˡ , inverseʳ
; ⁻¹-cong = cong (-_)
}
+-isAbelianGroup : IsAbelianGroup _≡_ _+_ (+ 0) (-_)
+-isAbelianGroup = record
{ isGroup = +-0-isGroup
; comm = +-comm
}
open Algebra.Properties.AbelianGroup
(record { isAbelianGroup = +-isAbelianGroup })
using () renaming (⁻¹-involutive to -‿involutive)
------------------------------------------------------------------------
-- Properties of _*_
*-comm : Commutative _*_
*-comm -[1+ a ] -[1+ b ] rewrite ℕ.*-comm (suc a) (suc b) = refl
*-comm -[1+ a ] (+ b ) rewrite ℕ.*-comm (suc a) b = refl
*-comm (+ a ) -[1+ b ] rewrite ℕ.*-comm a (suc b) = refl
*-comm (+ a ) (+ b ) rewrite ℕ.*-comm a b = refl
*-identityˡ : LeftIdentity (+ 1) _*_
*-identityˡ (+ zero ) = refl
*-identityˡ -[1+ n ] rewrite ℕ.+-right-identity n = refl
*-identityˡ (+ suc n) rewrite ℕ.+-right-identity n = refl
*-identityʳ : RightIdentity (+ 1) _*_
*-identityʳ x rewrite
𝕊.*-identityʳ (sign x)
| ℕ.*-right-identity ∣ x ∣
| signₙ◃∣n∣≡n x
= refl
*-identity : Identity (+ 1) _*_
*-identity = *-identityˡ , *-identityʳ
private
lemma : ∀ a b c → c ℕ+ (b ℕ+ a ℕ* suc b) ℕ* suc c
≡ c ℕ+ b ℕ* suc c ℕ+ a ℕ* suc (c ℕ+ b ℕ* suc c)
lemma =
solve 3 (λ a b c → c :+ (b :+ a :* (con 1 :+ b)) :* (con 1 :+ c)
:= c :+ b :* (con 1 :+ c) :+
a :* (con 1 :+ (c :+ b :* (con 1 :+ c))))
refl
where open ℕ.SemiringSolver
*-assoc : Associative _*_
*-assoc (+ zero) _ _ = refl
*-assoc x (+ zero) _ rewrite ℕ.*-right-zero ∣ x ∣ = refl
*-assoc x y (+ zero) rewrite
ℕ.*-right-zero ∣ y ∣
| ℕ.*-right-zero ∣ x ∣
| ℕ.*-right-zero ∣ sign x 𝕊* sign y ◃ ∣ x ∣ ℕ* ∣ y ∣ ∣
= refl
*-assoc -[1+ a ] -[1+ b ] (+ suc c) = cong (+_ ∘ suc) (lemma a b c)
*-assoc -[1+ a ] (+ suc b) -[1+ c ] = cong (+_ ∘ suc) (lemma a b c)
*-assoc (+ suc a) (+ suc b) (+ suc c) = cong (+_ ∘ suc) (lemma a b c)
*-assoc (+ suc a) -[1+ b ] -[1+ c ] = cong (+_ ∘ suc) (lemma a b c)
*-assoc -[1+ a ] -[1+ b ] -[1+ c ] = cong -[1+_] (lemma a b c)
*-assoc -[1+ a ] (+ suc b) (+ suc c) = cong -[1+_] (lemma a b c)
*-assoc (+ suc a) -[1+ b ] (+ suc c) = cong -[1+_] (lemma a b c)
*-assoc (+ suc a) (+ suc b) -[1+ c ] = cong -[1+_] (lemma a b c)
*-isSemigroup : IsSemigroup _ _
*-isSemigroup = record
{ isEquivalence = isEquivalence
; assoc = *-assoc
; ∙-cong = cong₂ _*_
}
*-1-isMonoid : IsMonoid _≡_ _*_ (+ 1)
*-1-isMonoid = record
{ isSemigroup = *-isSemigroup
; identity = *-identity
}
*-1-isCommutativeMonoid : IsCommutativeMonoid _≡_ _*_ (+ 1)
*-1-isCommutativeMonoid = record
{ isSemigroup = *-isSemigroup
; identityˡ = *-identityˡ
; comm = *-comm
}
*-1-commutativeMonoid : CommutativeMonoid _ _
*-1-commutativeMonoid = record
{ Carrier = ℤ
; _≈_ = _≡_
; _∙_ = _*_
; ε = + 1
; isCommutativeMonoid = *-1-isCommutativeMonoid
}
------------------------------------------------------------------------
-- The integers form a commutative ring
-- Distributivity
private
-- lemma used to prove distributivity.
distrib-lemma :
∀ a b c → (c ⊖ b) * -[1+ a ] ≡ a ℕ+ b ℕ* suc a ⊖ (a ℕ+ c ℕ* suc a)
distrib-lemma a b c
rewrite +-⊖-left-cancel a (b ℕ* suc a) (c ℕ* suc a)
| ⊖-swap (b ℕ* suc a) (c ℕ* suc a)
with b ≤? c
... | yes b≤c
rewrite ⊖-≥ b≤c
| ⊖-≥ (ℕ.*-mono-≤ b≤c (≤-refl {x = suc a}))
| -◃n≡-n ((c ∸ b) ℕ* suc a)
| ℕ.*-distrib-∸ʳ (suc a) c b
= refl
... | no b≰c
rewrite sign-⊖-≰ b≰c
| ∣⊖∣-≰ b≰c
| +◃n≡+n ((b ∸ c) ℕ* suc a)
| ⊖-≰ (b≰c ∘ ℕ.cancel-*-right-≤ b c a)
| -‿involutive (+ (b ℕ* suc a ∸ c ℕ* suc a))
| ℕ.*-distrib-∸ʳ (suc a) b c
= refl
distribʳ : _*_ DistributesOverʳ _+_
distribʳ (+ zero) y z
rewrite ℕ.*-right-zero ∣ y ∣
| ℕ.*-right-zero ∣ z ∣
| ℕ.*-right-zero ∣ y + z ∣
= refl
distribʳ x (+ zero) z
rewrite +-identityˡ z
| +-identityˡ (sign z 𝕊* sign x ◃ ∣ z ∣ ℕ* ∣ x ∣)
= refl
distribʳ x y (+ zero)
rewrite +-identityʳ y
| +-identityʳ (sign y 𝕊* sign x ◃ ∣ y ∣ ℕ* ∣ x ∣)
= refl
distribʳ -[1+ a ] -[1+ b ] -[1+ c ] = cong (+_) $
solve 3 (λ a b c → (con 2 :+ b :+ c) :* (con 1 :+ a)
:= (con 1 :+ b) :* (con 1 :+ a) :+
(con 1 :+ c) :* (con 1 :+ a))
refl a b c
distribʳ (+ suc a) (+ suc b) (+ suc c) = cong (+_) $
solve 3 (λ a b c → (con 1 :+ b :+ (con 1 :+ c)) :* (con 1 :+ a)
:= (con 1 :+ b) :* (con 1 :+ a) :+
(con 1 :+ c) :* (con 1 :+ a))
refl a b c
distribʳ -[1+ a ] (+ suc b) (+ suc c) = cong -[1+_] $
solve 3 (λ a b c → a :+ (b :+ (con 1 :+ c)) :* (con 1 :+ a)
:= (con 1 :+ b) :* (con 1 :+ a) :+
(a :+ c :* (con 1 :+ a)))
refl a b c
distribʳ (+ suc a) -[1+ b ] -[1+ c ] = cong -[1+_] $
solve 3 (λ a b c → a :+ (con 1 :+ a :+ (b :+ c) :* (con 1 :+ a))
:= (con 1 :+ b) :* (con 1 :+ a) :+
(a :+ c :* (con 1 :+ a)))
refl a b c
distribʳ -[1+ a ] -[1+ b ] (+ suc c) = distrib-lemma a b c
distribʳ -[1+ a ] (+ suc b) -[1+ c ] = distrib-lemma a c b
distribʳ (+ suc a) -[1+ b ] (+ suc c)
rewrite +-⊖-left-cancel a (c ℕ* suc a) (b ℕ* suc a)
with b ≤? c
... | yes b≤c
rewrite ⊖-≥ b≤c
| +-comm (- (+ (a ℕ+ b ℕ* suc a))) (+ (a ℕ+ c ℕ* suc a))
| ⊖-≥ (ℕ.*-mono-≤ b≤c (≤-refl {x = suc a}))
| ℕ.*-distrib-∸ʳ (suc a) c b
| +◃n≡+n (c ℕ* suc a ∸ b ℕ* suc a)
= refl
... | no b≰c
rewrite sign-⊖-≰ b≰c
| ∣⊖∣-≰ b≰c
| -◃n≡-n ((b ∸ c) ℕ* suc a)
| ⊖-≰ (b≰c ∘ ℕ.cancel-*-right-≤ b c a)
| ℕ.*-distrib-∸ʳ (suc a) b c
= refl
distribʳ (+ suc c) (+ suc a) -[1+ b ]
rewrite +-⊖-left-cancel c (a ℕ* suc c) (b ℕ* suc c)
with b ≤? a
... | yes b≤a
rewrite ⊖-≥ b≤a
| ⊖-≥ (ℕ.*-mono-≤ b≤a (≤-refl {x = suc c}))
| +◃n≡+n ((a ∸ b) ℕ* suc c)
| ℕ.*-distrib-∸ʳ (suc c) a b
= refl
... | no b≰a
rewrite sign-⊖-≰ b≰a
| ∣⊖∣-≰ b≰a
| ⊖-≰ (b≰a ∘ ℕ.cancel-*-right-≤ b a c)
| -◃n≡-n ((b ∸ a) ℕ* suc c)
| ℕ.*-distrib-∸ʳ (suc c) b a
= refl
isCommutativeSemiring : IsCommutativeSemiring _≡_ _+_ _*_ (+ 0) (+ 1)
isCommutativeSemiring = record
{ +-isCommutativeMonoid = +-0-isCommutativeMonoid
; *-isCommutativeMonoid = *-1-isCommutativeMonoid
; distribʳ = distribʳ
; zeroˡ = λ _ → refl
}
+-*-isRing : IsRing _≡_ _+_ _*_ -_ (+ 0) (+ 1)
+-*-isRing = record
{ +-isAbelianGroup = +-isAbelianGroup
; *-isMonoid = *-1-isMonoid
; distrib = IsCommutativeSemiring.distrib
isCommutativeSemiring
}
+-*-isCommutativeRing : IsCommutativeRing _≡_ _+_ _*_ -_ (+ 0) (+ 1)
+-*-isCommutativeRing = record
{ isRing = +-*-isRing
; *-comm = *-comm
}
commutativeRing : CommutativeRing _ _
commutativeRing = record
{ Carrier = ℤ
; _≈_ = _≡_
; _+_ = _+_
; _*_ = _*_
; -_ = -_
; 0# = + 0
; 1# = + 1
; isCommutativeRing = +-*-isCommutativeRing
}
import Algebra.RingSolver.Simple as Solver
import Algebra.RingSolver.AlmostCommutativeRing as ACR
module RingSolver =
Solver (ACR.fromCommutativeRing commutativeRing) _≟_
------------------------------------------------------------------------
-- More properties
-- ∣_∣ commutes with multiplication.
abs-*-commute : Homomorphic₂ ∣_∣ _*_ _ℕ*_
abs-*-commute i j = abs-◃ _ _
-- Multiplication is right cancellative for non-zero integers.
cancel-*-right : ∀ i j k → k ≢ + 0 → i * k ≡ j * k → i ≡ j
cancel-*-right i j k ≢0 eq with signAbs k
cancel-*-right i j .(+ 0) ≢0 eq | s ◂ zero = contradiction refl ≢0
cancel-*-right i j .(s ◃ suc n) ≢0 eq | s ◂ suc n
with ∣ s ◃ suc n ∣ | abs-◃ s (suc n) | sign (s ◃ suc n) | sign-◃ s n
... | .(suc n) | refl | .s | refl =
◃-cong (sign-i≡sign-j i j eq) $
ℕ.cancel-*-right ∣ i ∣ ∣ j ∣ $ abs-cong eq
where
sign-i≡sign-j : ∀ i j →
sign i 𝕊* s ◃ ∣ i ∣ ℕ* suc n ≡
sign j 𝕊* s ◃ ∣ j ∣ ℕ* suc n →
sign i ≡ sign j
sign-i≡sign-j i j eq with signAbs i | signAbs j
sign-i≡sign-j .(+ 0) .(+ 0) eq | s₁ ◂ zero | s₂ ◂ zero = refl
sign-i≡sign-j .(+ 0) .(s₂ ◃ suc n₂) eq | s₁ ◂ zero | s₂ ◂ suc n₂
with ∣ s₂ ◃ suc n₂ ∣ | abs-◃ s₂ (suc n₂)
... | .(suc n₂) | refl
with abs-cong {s₁} {sign (s₂ ◃ suc n₂) 𝕊* s} {0} {suc n₂ ℕ* suc n} eq
... | ()
sign-i≡sign-j .(s₁ ◃ suc n₁) .(+ 0) eq | s₁ ◂ suc n₁ | s₂ ◂ zero
with ∣ s₁ ◃ suc n₁ ∣ | abs-◃ s₁ (suc n₁)
... | .(suc n₁) | refl
with abs-cong {sign (s₁ ◃ suc n₁) 𝕊* s} {s₁} {suc n₁ ℕ* suc n} {0} eq
... | ()
sign-i≡sign-j .(s₁ ◃ suc n₁) .(s₂ ◃ suc n₂) eq | s₁ ◂ suc n₁ | s₂ ◂ suc n₂
with ∣ s₁ ◃ suc n₁ ∣ | abs-◃ s₁ (suc n₁)
| sign (s₁ ◃ suc n₁) | sign-◃ s₁ n₁
| ∣ s₂ ◃ suc n₂ ∣ | abs-◃ s₂ (suc n₂)
| sign (s₂ ◃ suc n₂) | sign-◃ s₂ n₂
... | .(suc n₁) | refl | .s₁ | refl | .(suc n₂) | refl | .s₂ | refl =
𝕊.cancel-*-right s₁ s₂ (sign-cong eq)
-- Multiplication with a positive number is right cancellative (for
-- _≤_).
cancel-*-+-right-≤ : ∀ m n o → m * + suc o ≤ n * + suc o → m ≤ n
cancel-*-+-right-≤ (-[1+ m ]) (-[1+ n ]) o (-≤- n≤m) =
-≤- (≤-pred (ℕ.cancel-*-right-≤ (suc n) (suc m) o (s≤s n≤m)))
cancel-*-+-right-≤ -[1+ _ ] (+ _) _ _ = -≤+
cancel-*-+-right-≤ (+ 0) -[1+ _ ] _ ()
cancel-*-+-right-≤ (+ suc _) -[1+ _ ] _ ()
cancel-*-+-right-≤ (+ 0) (+ 0) _ _ = +≤+ z≤n
cancel-*-+-right-≤ (+ 0) (+ suc _) _ _ = +≤+ z≤n
cancel-*-+-right-≤ (+ suc _) (+ 0) _ (+≤+ ())
cancel-*-+-right-≤ (+ suc m) (+ suc n) o (+≤+ m≤n) =
+≤+ (ℕ.cancel-*-right-≤ (suc m) (suc n) o m≤n)
-- Multiplication with a positive number is monotone.
*-+-right-mono : ∀ n → (λ x → x * + suc n) Preserves _≤_ ⟶ _≤_
*-+-right-mono _ (-≤+ {n = 0}) = -≤+
*-+-right-mono _ (-≤+ {n = suc _}) = -≤+
*-+-right-mono x (-≤- n≤m) =
-≤- (≤-pred (ℕ.*-mono-≤ (s≤s n≤m) (≤-refl {x = suc x})))
*-+-right-mono _ (+≤+ {m = 0} {n = 0} m≤n) = +≤+ m≤n
*-+-right-mono _ (+≤+ {m = 0} {n = suc _} m≤n) = +≤+ z≤n
*-+-right-mono _ (+≤+ {m = suc _} {n = 0} ())
*-+-right-mono x (+≤+ {m = suc _} {n = suc _} m≤n) =
+≤+ ((ℕ.*-mono-≤ m≤n (≤-refl {x = suc x})))