-
Notifications
You must be signed in to change notification settings - Fork 246
/
Copy pathProperties.agda
420 lines (378 loc) · 22.9 KB
/
Properties.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
------------------------------------------------------------------------
-- The Agda standard library
--
-- Properties related to Any
------------------------------------------------------------------------
{-# OPTIONS --cubical-compatible --safe #-}
open import Relation.Binary.Bundles using (StrictTotalOrder)
module Data.Tree.AVL.Indexed.Relation.Unary.Any.Properties
{a ℓ₁ ℓ₂} (sto : StrictTotalOrder a ℓ₁ ℓ₂)
where
open import Data.Maybe.Base as Maybe using (Maybe; nothing; just; maybe′)
open import Data.Maybe.Properties using (just-injective)
open import Data.Maybe.Relation.Unary.All as Maybe using (nothing; just)
open import Data.Nat.Base using (ℕ)
open import Data.Product.Base as Prod using (∃; ∃-syntax; _×_; _,_; proj₁; proj₂)
open import Data.Sum.Base as Sum using (_⊎_; inj₁; inj₂)
open import Function.Base as F
open import Level using (Level)
open import Relation.Binary.Definitions using (_Respects_; tri<; tri≈; tri>)
open import Relation.Binary.PropositionalEquality.Core using (_≡_) renaming (refl to ≡-refl)
open import Relation.Nullary using (¬_; Dec; yes; no)
open import Relation.Nullary.Negation using (contradiction)
open import Relation.Unary using (Pred; _∩_)
open import Data.Tree.AVL.Indexed sto as AVL
open import Data.Tree.AVL.Indexed.Relation.Unary.Any sto as Any
open StrictTotalOrder sto renaming (Carrier to Key; trans to <-trans); open Eq using (_≉_; sym; trans)
open import Relation.Binary.Construct.Add.Extrema.Strict _<_ using ([<]-injective)
import Relation.Binary.Reasoning.StrictPartialOrder as <-Reasoning
private
variable
v p q : Level
k : Key
V : Value v
l u : Key⁺
n : ℕ
P Q : Pred (K& V) p
------------------------------------------------------------------------
-- Any.lookup
lookup-result : {t : Tree V l u n} (p : Any P t) → P (Any.lookup p)
lookup-result (here p) = p
lookup-result (left p) = lookup-result p
lookup-result (right p) = lookup-result p
lookup-bounded : {t : Tree V l u n} (p : Any P t) → l < Any.lookup p .key < u
lookup-bounded {t = node kv lk ku bal} (here p) = ordered lk , ordered ku
lookup-bounded {t = node kv lk ku bal} (left p) =
Prod.map₂ (flip (trans⁺ _) (ordered ku)) (lookup-bounded p)
lookup-bounded {t = node kv lk ku bal} (right p) =
Prod.map₁ (trans⁺ _ (ordered lk)) (lookup-bounded p)
lookup-rebuild : {t : Tree V l u n} (p : Any P t) → Q (Any.lookup p) → Any Q t
lookup-rebuild (here _) q = here q
lookup-rebuild (left p) q = left (lookup-rebuild p q)
lookup-rebuild (right p) q = right (lookup-rebuild p q)
lookup-rebuild-accum : {t : Tree V l u n} (p : Any P t) → Q (Any.lookup p) → Any (Q ∩ P) t
lookup-rebuild-accum p q = lookup-rebuild p (q , lookup-result p)
joinˡ⁺-here⁺ : ∀ {l u hˡ hʳ h} →
(kv : K& V) →
(l : ∃ λ i → Tree V l [ kv .key ] (i ⊕ hˡ)) →
(r : Tree V [ kv .key ] u hʳ) →
(bal : hˡ ∼ hʳ ⊔ h) →
P kv → Any P (proj₂ (joinˡ⁺ kv l r bal))
joinˡ⁺-here⁺ k₂ (0# , t₁) t₃ bal p = here p
joinˡ⁺-here⁺ k₂ (1# , t₁) t₃ ∼0 p = here p
joinˡ⁺-here⁺ k₂ (1# , t₁) t₃ ∼+ p = here p
joinˡ⁺-here⁺ k₄ (1# , node k₂ t₁ t₃ ∼-) t₅ ∼- p = right (here p)
joinˡ⁺-here⁺ k₄ (1# , node k₂ t₁ t₃ ∼0) t₅ ∼- p = right (here p)
joinˡ⁺-here⁺ k₆ (1# , node⁺ k₂ t₁ k₄ t₃ t₅ bal) t₇ ∼- p = right (here p)
joinˡ⁺-left⁺ : ∀ {l u hˡ hʳ h} →
(k : K& V) →
(l : ∃ λ i → Tree V l [ k .key ] (i ⊕ hˡ)) →
(r : Tree V [ k .key ] u hʳ) →
(bal : hˡ ∼ hʳ ⊔ h) →
Any P (proj₂ l) → Any P (proj₂ (joinˡ⁺ k l r bal))
joinˡ⁺-left⁺ k₂ (0# , t₁) t₃ bal p = left p
joinˡ⁺-left⁺ k₂ (1# , t₁) t₃ ∼0 p = left p
joinˡ⁺-left⁺ k₂ (1# , t₁) t₃ ∼+ p = left p
joinˡ⁺-left⁺ k₄ (1# , node k₂ t₁ t₃ ∼-) t₅ ∼- (here p) = here p
joinˡ⁺-left⁺ k₄ (1# , node k₂ t₁ t₃ ∼-) t₅ ∼- (left p) = left p
joinˡ⁺-left⁺ k₄ (1# , node k₂ t₁ t₃ ∼-) t₅ ∼- (right p) = right (left p)
joinˡ⁺-left⁺ k₄ (1# , node k₂ t₁ t₃ ∼0) t₅ ∼- (here p) = here p
joinˡ⁺-left⁺ k₄ (1# , node k₂ t₁ t₃ ∼0) t₅ ∼- (left p) = left p
joinˡ⁺-left⁺ k₄ (1# , node k₂ t₁ t₃ ∼0) t₅ ∼- (right p) = right (left p)
joinˡ⁺-left⁺ k₆ (1# , node⁺ k₂ t₁ k₄ t₃ t₅ bal) t₇ ∼- (here p) = left (here p)
joinˡ⁺-left⁺ k₆ (1# , node⁺ k₂ t₁ k₄ t₃ t₅ bal) t₇ ∼- (left p) = left (left p)
joinˡ⁺-left⁺ k₆ (1# , node⁺ k₂ t₁ k₄ t₃ t₅ bal) t₇ ∼- (right (here p)) = here p
joinˡ⁺-left⁺ k₆ (1# , node⁺ k₂ t₁ k₄ t₃ t₅ bal) t₇ ∼- (right (left p)) = left (right p)
joinˡ⁺-left⁺ k₆ (1# , node⁺ k₂ t₁ k₄ t₃ t₅ bal) t₇ ∼- (right (right p)) = right (left p)
joinˡ⁺-right⁺ : ∀ {l u hˡ hʳ h} →
(kv@(k , v) : K& V) →
(l : ∃ λ i → Tree V l [ k ] (i ⊕ hˡ)) →
(r : Tree V [ k ] u hʳ) →
(bal : hˡ ∼ hʳ ⊔ h) →
Any P r → Any P (proj₂ (joinˡ⁺ kv l r bal))
joinˡ⁺-right⁺ k₂ (0# , t₁) t₃ bal p = right p
joinˡ⁺-right⁺ k₂ (1# , t₁) t₃ ∼0 p = right p
joinˡ⁺-right⁺ k₂ (1# , t₁) t₃ ∼+ p = right p
joinˡ⁺-right⁺ k₄ (1# , node k₂ t₁ t₃ ∼-) t₅ ∼- p = right (right p)
joinˡ⁺-right⁺ k₄ (1# , node k₂ t₁ t₃ ∼0) t₅ ∼- p = right (right p)
joinˡ⁺-right⁺ k₆ (1# , node⁺ k₂ t₁ k₄ t₃ t₅ bal) t₇ ∼- p = right (right p)
joinʳ⁺-here⁺ : ∀ {l u hˡ hʳ h} →
(kv : K& V) →
(l : Tree V l [ kv .key ] hˡ) →
(r : ∃ λ i → Tree V [ kv .key ] u (i ⊕ hʳ)) →
(bal : hˡ ∼ hʳ ⊔ h) →
P kv → Any P (proj₂ (joinʳ⁺ kv l r bal))
joinʳ⁺-here⁺ k₂ t₁ (0# , t₃) bal p = here p
joinʳ⁺-here⁺ k₂ t₁ (1# , t₃) ∼0 p = here p
joinʳ⁺-here⁺ k₂ t₁ (1# , t₃) ∼- p = here p
joinʳ⁺-here⁺ k₂ t₁ (1# , node k₄ t₃ t₅ ∼+) ∼+ p = left (here p)
joinʳ⁺-here⁺ k₂ t₁ (1# , node k₄ t₃ t₅ ∼0) ∼+ p = left (here p)
joinʳ⁺-here⁺ k₂ t₁ (1# , node⁻ k₆ k₄ t₃ t₅ bal t₇) ∼+ p = left (here p)
joinʳ⁺-left⁺ : ∀ {l u hˡ hʳ h} →
(kv : K& V) →
(l : Tree V l [ kv .key ] hˡ) →
(r : ∃ λ i → Tree V [ kv .key ] u (i ⊕ hʳ)) →
(bal : hˡ ∼ hʳ ⊔ h) →
Any P l → Any P (proj₂ (joinʳ⁺ kv l r bal))
joinʳ⁺-left⁺ k₂ t₁ (0# , t₃) bal p = left p
joinʳ⁺-left⁺ k₂ t₁ (1# , t₃) ∼0 p = left p
joinʳ⁺-left⁺ k₂ t₁ (1# , t₃) ∼- p = left p
joinʳ⁺-left⁺ k₂ t₁ (1# , node k₄ t₃ t₅ ∼+) ∼+ p = left (left p)
joinʳ⁺-left⁺ k₂ t₁ (1# , node k₄ t₃ t₅ ∼0) ∼+ p = left (left p)
joinʳ⁺-left⁺ k₂ t₁ (1# , node⁻ k₆ k₄ t₃ t₅ bal t₇) ∼+ p = left (left p)
joinʳ⁺-right⁺ : ∀ {l u hˡ hʳ h} →
(kv : K& V) →
(l : Tree V l [ kv .key ] hˡ) →
(r : ∃ λ i → Tree V [ kv .key ] u (i ⊕ hʳ)) →
(bal : hˡ ∼ hʳ ⊔ h) →
Any P (proj₂ r) → Any P (proj₂ (joinʳ⁺ kv l r bal))
joinʳ⁺-right⁺ k₂ t₁ (0# , t₃) bal p = right p
joinʳ⁺-right⁺ k₂ t₁ (1# , t₃) ∼0 p = right p
joinʳ⁺-right⁺ k₂ t₁ (1# , t₃) ∼- p = right p
joinʳ⁺-right⁺ k₂ t₁ (1# , node k₄ t₃ t₅ ∼+) ∼+ (here p) = here p
joinʳ⁺-right⁺ k₂ t₁ (1# , node k₄ t₃ t₅ ∼+) ∼+ (left p) = left (right p)
joinʳ⁺-right⁺ k₂ t₁ (1# , node k₄ t₃ t₅ ∼+) ∼+ (right p) = right p
joinʳ⁺-right⁺ k₂ t₁ (1# , node k₄ t₃ t₅ ∼0) ∼+ (here p) = here p
joinʳ⁺-right⁺ k₂ t₁ (1# , node k₄ t₃ t₅ ∼0) ∼+ (left p) = left (right p)
joinʳ⁺-right⁺ k₂ t₁ (1# , node k₄ t₃ t₅ ∼0) ∼+ (right p) = right p
joinʳ⁺-right⁺ k₂ t₁ (1# , node⁻ k₆ k₄ t₃ t₅ bal t₇) ∼+ (here p) = right (here p)
joinʳ⁺-right⁺ k₂ t₁ (1# , node⁻ k₆ k₄ t₃ t₅ bal t₇) ∼+ (left (here p)) = here p
joinʳ⁺-right⁺ k₂ t₁ (1# , node⁻ k₆ k₄ t₃ t₅ bal t₇) ∼+ (left (left p)) = left (right p)
joinʳ⁺-right⁺ k₂ t₁ (1# , node⁻ k₆ k₄ t₃ t₅ bal t₇) ∼+ (left (right p)) = right (left p)
joinʳ⁺-right⁺ k₂ t₁ (1# , node⁻ k₆ k₄ t₃ t₅ bal t₇) ∼+ (right p) = right (right p)
joinˡ⁺⁻ : ∀ {l u hˡ hʳ h} →
(kv@(k , v) : K& V) →
(l : ∃ λ i → Tree V l [ k ] (i ⊕ hˡ)) →
(r : Tree V [ k ] u hʳ) →
(bal : hˡ ∼ hʳ ⊔ h) →
Any P (proj₂ (joinˡ⁺ kv l r bal)) →
P kv ⊎ Any P (proj₂ l) ⊎ Any P r
joinˡ⁺⁻ k₂ (0# , t₁) t₃ ba = Any.toSum
joinˡ⁺⁻ k₂ (1# , t₁) t₃ ∼0 = Any.toSum
joinˡ⁺⁻ k₂ (1# , t₁) t₃ ∼+ = Any.toSum
joinˡ⁺⁻ k₄ (1# , node k₂ t₁ t₃ ∼-) t₅ ∼- = λ where
(left p) → inj₂ (inj₁ (left p))
(here p) → inj₂ (inj₁ (here p))
(right (left p)) → inj₂ (inj₁ (right p))
(right (here p)) → inj₁ p
(right (right p)) → inj₂ (inj₂ p)
joinˡ⁺⁻ k₄ (1# , node k₂ t₁ t₃ ∼0) t₅ ∼- = λ where
(left p) → inj₂ (inj₁ (left p))
(here p) → inj₂ (inj₁ (here p))
(right (left p)) → inj₂ (inj₁ (right p))
(right (here p)) → inj₁ p
(right (right p)) → inj₂ (inj₂ p)
joinˡ⁺⁻ k₆ (1# , node⁺ k₂ t₁ k₄ t₃ t₅ bal) t₇ ∼- = λ where
(left (left p)) → inj₂ (inj₁ (left p))
(left (here p)) → inj₂ (inj₁ (here p))
(left (right p)) → inj₂ (inj₁ (right (left p)))
(here p) → inj₂ (inj₁ (right (here p)))
(right (left p)) → inj₂ (inj₁ (right (right p)))
(right (here p)) → inj₁ p
(right (right p)) → inj₂ (inj₂ p)
joinʳ⁺⁻ : ∀ {l u hˡ hʳ h} →
(kv : K& V) →
(l : Tree V l [ kv .key ] hˡ) →
(r : ∃ λ i → Tree V [ kv .key ] u (i ⊕ hʳ)) →
(bal : hˡ ∼ hʳ ⊔ h) →
Any P (proj₂ (joinʳ⁺ kv l r bal)) →
P kv ⊎ Any P l ⊎ Any P (proj₂ r)
joinʳ⁺⁻ k₂ t₁ (0# , t₃) bal = Any.toSum
joinʳ⁺⁻ k₂ t₁ (1# , t₃) ∼0 = Any.toSum
joinʳ⁺⁻ k₂ t₁ (1# , t₃) ∼- = Any.toSum
joinʳ⁺⁻ k₂ t₁ (1# , node k₄ t₃ t₅ ∼+) ∼+ = λ where
(left (left p)) → inj₂ (inj₁ p)
(left (here p)) → inj₁ p
(left (right p)) → inj₂ (inj₂ (left p))
(here p) → inj₂ (inj₂ (here p))
(right p) → inj₂ (inj₂ (right p))
joinʳ⁺⁻ k₂ t₁ (1# , node k₄ t₃ t₅ ∼0) ∼+ = λ where
(left (left p)) → inj₂ (inj₁ p)
(left (here p)) → inj₁ p
(left (right p)) → inj₂ (inj₂ (left p))
(here p) → inj₂ (inj₂ (here p))
(right p) → inj₂ (inj₂ (right p))
joinʳ⁺⁻ k₂ t₁ (1# , node⁻ k₆ k₄ t₃ t₅ bal t₇) ∼+ = λ where
(left (left p)) → inj₂ (inj₁ p)
(left (here p)) → inj₁ p
(left (right p)) → inj₂ (inj₂ (left (left p)))
(here p) → inj₂ (inj₂ (left (here p)))
(right (left p)) → inj₂ (inj₂ (left (right p)))
(right (here p)) → inj₂ (inj₂ (here p))
(right (right p)) → inj₂ (inj₂ (right p))
module _ {V : Value v} where
private
Val = Value.family V
Val≈ = Value.respects V
singleton⁺ : {P : Pred (K& V) p} →
(k : Key) →
(v : Val k) →
(l<k<u : l < k < u) →
P (k , v) → Any P (singleton k v l<k<u)
singleton⁺ k v l<k<u Pkv = here Pkv
singleton⁻ : {P : Pred (K& V) p} →
(k : Key) →
(v : Val k) →
(l<k<u : l < k < u) →
Any P (singleton k v l<k<u) → P (k , v)
singleton⁻ k v l<k<u (here Pkv) = Pkv
----------------------------------------------------------------------
-- insert
module _ (k : Key) (f : Maybe (Val k) → Val k) where
open <-Reasoning AVL.strictPartialOrder
Any-insertWith-nothing : (t : Tree V l u n) (seg : l < k < u) →
P (k , f nothing) →
¬ (Any ((k ≈_) ∘′ key) t) → Any P (proj₂ (insertWith k f t seg))
Any-insertWith-nothing (leaf l<u) seg pr ¬p = here pr
Any-insertWith-nothing (node kv@(k′ , v) lk ku bal) (l<k , k<u) pr ¬p
with compare k k′
... | tri≈ _ k≈k′ _ = contradiction (here k≈k′) ¬p
... | tri< k<k′ _ _ = let seg′ = l<k , [ k<k′ ]ᴿ; lk′ = insertWith k f lk seg′
ih = Any-insertWith-nothing lk seg′ pr (λ p → ¬p (left p))
in joinˡ⁺-left⁺ kv lk′ ku bal ih
... | tri> _ _ k>k′ = let seg′ = [ k>k′ ]ᴿ , k<u; ku′ = insertWith k f ku seg′
ih = Any-insertWith-nothing ku seg′ pr (λ p → ¬p (right p))
in joinʳ⁺-right⁺ kv lk ku′ bal ih
Any-insertWith-just : (t : Tree V l u n) (seg : l < k < u) →
(pr : ∀ k′ v → (eq : k ≈ k′) → P (k′ , Val≈ eq (f (just (Val≈ (sym eq) v))))) →
Any ((k ≈_) ∘′ key) t → Any P (proj₂ (insertWith k f t seg))
Any-insertWith-just (node kv@(k′ , v) lk ku bal) (l<k , k<u) pr p
with p | compare k k′
-- happy paths
... | here _ | tri≈ _ k≈k′ _ = here (pr k′ v k≈k′)
... | left lp | tri< k<k′ _ _ = let seg′ = l<k , [ k<k′ ]ᴿ; lk′ = insertWith k f lk seg′ in
joinˡ⁺-left⁺ kv lk′ ku bal (Any-insertWith-just lk seg′ pr lp)
... | right rp | tri> _ _ k>k′ = let seg′ = [ k>k′ ]ᴿ , k<u; ku′ = insertWith k f ku seg′ in
joinʳ⁺-right⁺ kv lk ku′ bal (Any-insertWith-just ku seg′ pr rp)
-- impossible cases
... | here eq | tri< k<k′ _ _ = begin-contradiction
[ k ] <⟨ [ k<k′ ]ᴿ ⟩
[ k′ ] ≈⟨ [ sym eq ]ᴱ ⟩
[ k ] ∎
... | here eq | tri> _ _ k>k′ = begin-contradiction
[ k ] ≈⟨ [ eq ]ᴱ ⟩
[ k′ ] <⟨ [ k>k′ ]ᴿ ⟩
[ k ] ∎
... | left lp | tri≈ _ k≈k′ _ = begin-contradiction
let k″ = Any.lookup lp .key; k≈k″ = lookup-result lp; (_ , k″<k′) = lookup-bounded lp in
[ k ] ≈⟨ [ k≈k″ ]ᴱ ⟩
[ k″ ] <⟨ k″<k′ ⟩
[ k′ ] ≈⟨ [ sym k≈k′ ]ᴱ ⟩
[ k ] ∎
... | left lp | tri> _ _ k>k′ = begin-contradiction
let k″ = Any.lookup lp .key; k≈k″ = lookup-result lp; (_ , k″<k′) = lookup-bounded lp in
[ k ] ≈⟨ [ k≈k″ ]ᴱ ⟩
[ k″ ] <⟨ k″<k′ ⟩
[ k′ ] <⟨ [ k>k′ ]ᴿ ⟩
[ k ] ∎
... | right rp | tri< k<k′ _ _ = begin-contradiction
let k″ = Any.lookup rp .key; k≈k″ = lookup-result rp; (k′<k″ , _) = lookup-bounded rp in
[ k ] <⟨ [ k<k′ ]ᴿ ⟩
[ k′ ] <⟨ k′<k″ ⟩
[ k″ ] ≈⟨ [ sym k≈k″ ]ᴱ ⟩
[ k ] ∎
... | right rp | tri≈ _ k≈k′ _ = begin-contradiction
let k″ = Any.lookup rp .key; k≈k″ = lookup-result rp; (k′<k″ , _) = lookup-bounded rp in
[ k ] ≈⟨ [ k≈k′ ]ᴱ ⟩
[ k′ ] <⟨ k′<k″ ⟩
[ k″ ] ≈⟨ [ sym k≈k″ ]ᴱ ⟩
[ k ] ∎
module _ (k : Key) (v : Val k) (t : Tree V l u n) (seg : l < k < u) where
Any-insert-nothing : P (k , v) → ¬ (Any ((k ≈_) ∘′ key) t) → Any P (proj₂ (insert k v t seg))
Any-insert-nothing = Any-insertWith-nothing k (F.const v) t seg
Any-insert-just : (pr : ∀ k′ → (eq : k ≈ k′) → P (k′ , Val≈ eq v)) →
Any ((k ≈_) ∘′ key) t → Any P (proj₂ (insert k v t seg))
Any-insert-just pr = Any-insertWith-just k (F.const v) t seg (λ k′ _ eq → pr k′ eq)
module _ (k : Key) (f : Maybe (Val k) → Val k) where
insertWith⁺ : (t : Tree V l u n) (seg : l < k < u) →
(p : Any P t) → k ≉ Any.lookupKey p →
Any P (proj₂ (insertWith k f t seg))
insertWith⁺ (node kv@(k′ , v′) l r bal) (l<k , k<u) (here p) k≉
with compare k k′
... | tri< k<k′ _ _ = let l′ = insertWith k f l (l<k , [ k<k′ ]ᴿ)
in joinˡ⁺-here⁺ kv l′ r bal p
... | tri≈ _ k≈k′ _ = contradiction k≈k′ k≉
... | tri> _ _ k′<k = let r′ = insertWith k f r ([ k′<k ]ᴿ , k<u)
in joinʳ⁺-here⁺ kv l r′ bal p
insertWith⁺ (node kv@(k′ , v′) l r bal) (l<k , k<u) (left p) k≉
with compare k k′
... | tri< k<k′ _ _ = let l′ = insertWith k f l (l<k , [ k<k′ ]ᴿ)
ih = insertWith⁺ l (l<k , [ k<k′ ]ᴿ) p k≉
in joinˡ⁺-left⁺ kv l′ r bal ih
... | tri≈ _ k≈k′ _ = left p
... | tri> _ _ k′<k = let r′ = insertWith k f r ([ k′<k ]ᴿ , k<u)
in joinʳ⁺-left⁺ kv l r′ bal p
insertWith⁺ (node kv@(k′ , v′) l r bal) (l<k , k<u) (right p) k≉
with compare k k′
... | tri< k<k′ _ _ = let l′ = insertWith k f l (l<k , [ k<k′ ]ᴿ)
in joinˡ⁺-right⁺ kv l′ r bal p
... | tri≈ _ k≈k′ _ = right p
... | tri> _ _ k′<k = let r′ = insertWith k f r ([ k′<k ]ᴿ , k<u)
ih = insertWith⁺ r ([ k′<k ]ᴿ , k<u) p k≉
in joinʳ⁺-right⁺ kv l r′ bal ih
insert⁺ : (k : Key) (v : Val k) (t : Tree V l u n) (seg : l < k < u) →
(p : Any P t) → k ≉ Any.lookupKey p →
Any P (proj₂ (insert k v t seg))
insert⁺ k v = insertWith⁺ k (F.const v)
module _
{P : Pred (K& V) p}
(P-Resp : ∀ {k k′ v} → (k≈k′ : k ≈ k′) → P (k′ , Val≈ k≈k′ v) → P (k , v))
(k : Key) (v : Val k)
where
insert⁻ : (t : Tree V l u n) (seg : l < k < u) →
Any P (proj₂ (insert k v t seg)) →
P (k , v) ⊎ Any (λ{ (k′ , v′) → k ≉ k′ × P (k′ , v′)}) t
insert⁻ (leaf l<u) seg (here p) = inj₁ p
insert⁻ (node kv′@(k′ , v′) l r bal) (l<k , k<u) p with compare k k′
insert⁻ (node kv′@(k′ , v′) l r bal) (l<k , k<u) p | tri< k<k′ k≉k′ _
with joinˡ⁺⁻ kv′ (insert k v l (l<k , [ k<k′ ]ᴿ)) r bal p
... | inj₁ p = inj₂ (here (k≉k′ , p))
... | inj₂ (inj₂ p) = inj₂ (right (lookup-rebuild-accum p k≉p))
where
k′<p = [<]-injective (proj₁ (lookup-bounded p))
k≉p = λ k≈p → irrefl k≈p (<-trans k<k′ k′<p)
... | inj₂ (inj₁ p) = Sum.map₂ (λ q → left q) (insert⁻ l (l<k , [ k<k′ ]ᴿ) p)
insert⁻ (node kv′@(k′ , v′) l r bal) (l<k , k<u) p | tri> _ k≉k′ k′<k
with joinʳ⁺⁻ kv′ l (insert k v r ([ k′<k ]ᴿ , k<u)) bal p
... | inj₁ p = inj₂ (here (k≉k′ , p))
... | inj₂ (inj₁ p) = inj₂ (left (lookup-rebuild-accum p k≉p))
where
p<k′ = [<]-injective (proj₂ (lookup-bounded p))
k≉p = λ k≈p → irrefl (sym k≈p) (<-trans p<k′ k′<k)
... | inj₂ (inj₂ p) = Sum.map₂ (λ q → right q) (insert⁻ r ([ k′<k ]ᴿ , k<u) p)
insert⁻ (node kv′@(k′ , v′) l r bal) (l<k , k<u) p | tri≈ _ k≈k′ _
with p
... | left p = inj₂ (left (lookup-rebuild-accum p k≉p))
where
p<k′ = [<]-injective (proj₂ (lookup-bounded p))
k≉p = λ k≈p → irrefl (trans (sym k≈p) k≈k′) p<k′
... | here p = inj₁ (P-Resp k≈k′ p)
... | right p = inj₂ (right (lookup-rebuild-accum p k≉p))
where
k′<p = [<]-injective (proj₁ (lookup-bounded p))
k≉p = λ k≈p → irrefl (trans (sym k≈k′) k≈p) k′<p
lookup⁺ : (t : Tree V l u n) (k : Key) (seg : l < k < u) →
(p : Any P t) →
key (Any.lookup p) ≉ k ⊎ ∃[ p≈k ] AVL.lookup t k seg ≡ just (Val≈ p≈k (value (Any.lookup p)))
lookup⁺ (node (k′ , v′) l r bal) k (l<k , k<u) p
with compare k′ k | p
... | tri< k′<k _ _ | right p = lookup⁺ r k ([ k′<k ]ᴿ , k<u) p
... | tri≈ _ k′≈k _ | here p = inj₂ (k′≈k , ≡-refl)
... | tri> _ _ k<k′ | left p = lookup⁺ l k (l<k , [ k<k′ ]ᴿ) p
... | tri< k′<k _ _ | left p = inj₁ (λ p≈k → irrefl p≈k (<-trans p<k′ k′<k))
where p<k′ = [<]-injective (proj₂ (lookup-bounded p))
... | tri< k′<k _ _ | here p = inj₁ (λ p≈k → irrefl p≈k k′<k)
... | tri≈ _ k′≈k _ | left p = inj₁ (λ p≈k → irrefl (trans p≈k (sym k′≈k)) p<k′)
where p<k′ = [<]-injective (proj₂ (lookup-bounded p))
... | tri≈ _ k′≈k _ | right p = inj₁ (λ p≈k → irrefl (trans k′≈k (sym p≈k)) k′<p)
where k′<p = [<]-injective (proj₁ (lookup-bounded p))
... | tri> _ _ k<k′ | here p = inj₁ (λ p≈k → irrefl (sym p≈k) k<k′)
... | tri> _ _ k<k′ | right p = inj₁ (λ p≈k → irrefl (sym p≈k) (<-trans k<k′ k′<p))
where k′<p = [<]-injective (proj₁ (lookup-bounded p))
lookup⁻ : (t : Tree V l u n) (k : Key) (v : Val k) (seg : l < k < u) →
AVL.lookup t k seg ≡ just v →
Any (λ{ (k′ , v′) → ∃ λ k′≈k → Val≈ k′≈k v′ ≡ v}) t
lookup⁻ (node (k′ , v′) l r bal) k v (l<k , k<u) eq with compare k′ k
... | tri< k′<k _ _ = right (lookup⁻ r k v ([ k′<k ]ᴿ , k<u) eq)
... | tri≈ _ k′≈k _ = here (k′≈k , just-injective eq)
... | tri> _ _ k<k′ = left (lookup⁻ l k v (l<k , [ k<k′ ]ᴿ) eq)