-
Notifications
You must be signed in to change notification settings - Fork 246
/
Copy pathSigned.agda
192 lines (150 loc) · 7.22 KB
/
Signed.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
------------------------------------------------------------------------
-- The Agda standard library
--
-- Alternative definition of divisibility without using modulus.
------------------------------------------------------------------------
{-# OPTIONS --cubical-compatible --safe #-}
module Data.Integer.Divisibility.Signed where
open import Function.Base using (_⟨_⟩_; _$_; _$′_; _∘_; _∘′_)
open import Data.Integer.Base
open import Data.Integer.Properties
open import Data.Integer.Divisibility as Unsigned
using (divides)
renaming (_∣_ to _∣ᵤ_)
import Data.Nat.Base as ℕ
import Data.Nat.Divisibility as ℕ
import Data.Nat.Coprimality as ℕ
import Data.Nat.Properties as ℕ
import Data.Sign as S
import Data.Sign.Properties as SProp
open import Level
open import Relation.Binary.Core using (_⇒_; _Preserves_⟶_)
open import Relation.Binary.Bundles using (Preorder)
open import Relation.Binary.Structures using (IsPreorder)
open import Relation.Binary.Definitions
using (Reflexive; Transitive; Decidable)
open import Relation.Binary.PropositionalEquality
import Relation.Binary.Reasoning.Preorder as PreorderReasoning
open import Relation.Nullary.Decidable using (yes; no)
import Relation.Nullary.Decidable as DEC
open import Relation.Binary.Reasoning.Syntax
------------------------------------------------------------------------
-- Type
infix 4 _∣_
record _∣_ (k z : ℤ) : Set where
constructor divides
field quotient : ℤ
equality : z ≡ quotient * k
open _∣_ using (quotient) public
------------------------------------------------------------------------
-- Conversion between signed and unsigned divisibility
∣ᵤ⇒∣ : ∀ {k i} → k ∣ᵤ i → k ∣ i
∣ᵤ⇒∣ {k} {i} (divides 0 eq) = divides (+ 0) (∣i∣≡0⇒i≡0 eq)
∣ᵤ⇒∣ {k} {i} (divides q@(ℕ.suc _) eq) with k ≟ +0
... | yes refl = divides +0 (∣i∣≡0⇒i≡0 (trans eq (ℕ.*-zeroʳ q)))
... | no neq = divides (sign i S.* sign k ◃ q) (◃-cong sign-eq abs-eq)
where
ikq = sign i S.* sign k ◃ q
*-nonZero : ∀ m n .{{_ : ℕ.NonZero m}} .{{_ : ℕ.NonZero n}} → ℕ.NonZero (m ℕ.* n)
*-nonZero (ℕ.suc _) (ℕ.suc _) = _
◃-nonZero : ∀ s n .{{_ : ℕ.NonZero n}} → NonZero (s ◃ n)
◃-nonZero S.- (ℕ.suc _) = _
◃-nonZero S.+ (ℕ.suc _) = _
ikq≢0 : NonZero ikq
ikq≢0 = ◃-nonZero (sign i S.* sign k) q
instance
ikq*∣k∣≢0 : ℕ.NonZero (∣ ikq ∣ ℕ.* ∣ k ∣)
ikq*∣k∣≢0 = *-nonZero ∣ ikq ∣ ∣ k ∣ {{ikq≢0}} {{≢-nonZero neq}}
sign-eq : sign i ≡ sign (ikq * k)
sign-eq = sym $ begin
sign (ikq * k) ≡⟨ sign-◃ (sign ikq S.* sign k) (∣ ikq ∣ ℕ.* ∣ k ∣) ⟩
sign ikq S.* sign k ≡⟨ cong (S._* sign k) (sign-◃ (sign i S.* sign k) q) ⟩
(sign i S.* sign k) S.* sign k ≡⟨ SProp.*-assoc (sign i) (sign k) (sign k) ⟩
sign i S.* (sign k S.* sign k) ≡⟨ cong (sign i S.*_) (SProp.s*s≡+ (sign k)) ⟩
sign i S.* S.+ ≡⟨ SProp.*-identityʳ (sign i) ⟩
sign i ∎
where open ≡-Reasoning
abs-eq : ∣ i ∣ ≡ ∣ ikq * k ∣
abs-eq = sym $ begin
∣ ikq * k ∣ ≡⟨ ∣i*j∣≡∣i∣*∣j∣ ikq k ⟩
∣ ikq ∣ ℕ.* ∣ k ∣ ≡⟨ cong (ℕ._* ∣ k ∣) (abs-◃ (sign i S.* sign k) q) ⟩
q ℕ.* ∣ k ∣ ≡⟨ sym eq ⟩
∣ i ∣ ∎
where open ≡-Reasoning
∣⇒∣ᵤ : ∀ {k i} → k ∣ i → k ∣ᵤ i
∣⇒∣ᵤ {k} {i} (divides q eq) = divides ∣ q ∣ $′ begin
∣ i ∣ ≡⟨ cong ∣_∣ eq ⟩
∣ q * k ∣ ≡⟨ abs-* q k ⟩
∣ q ∣ ℕ.* ∣ k ∣ ∎
where open ≡-Reasoning
------------------------------------------------------------------------
-- _∣_ is a preorder
∣-refl : Reflexive _∣_
∣-refl = ∣ᵤ⇒∣ ℕ.∣-refl
∣-reflexive : _≡_ ⇒ _∣_
∣-reflexive refl = ∣-refl
∣-trans : Transitive _∣_
∣-trans i∣j j∣k = ∣ᵤ⇒∣ (ℕ.∣-trans (∣⇒∣ᵤ i∣j) (∣⇒∣ᵤ j∣k))
∣-isPreorder : IsPreorder _≡_ _∣_
∣-isPreorder = record
{ isEquivalence = isEquivalence
; reflexive = ∣-reflexive
; trans = ∣-trans
}
∣-preorder : Preorder _ _ _
∣-preorder = record { isPreorder = ∣-isPreorder }
------------------------------------------------------------------------
-- Divisibility reasoning
module ∣-Reasoning where
private module Base = PreorderReasoning ∣-preorder
open Base public hiding (step-∼; step-≈; step-≈˘)
open ∣-syntax _IsRelatedTo_ _IsRelatedTo_ ∼-go public
------------------------------------------------------------------------
-- Other properties of _∣_
infix 4 _∣?_
_∣?_ : Decidable _∣_
k ∣? m = DEC.map′ ∣ᵤ⇒∣ ∣⇒∣ᵤ (∣ k ∣ ℕ.∣? ∣ m ∣)
0∣⇒≡0 : ∀ {m} → 0ℤ ∣ m → m ≡ 0ℤ
0∣⇒≡0 0|m = ∣i∣≡0⇒i≡0 (ℕ.0∣⇒≡0 (∣⇒∣ᵤ 0|m))
m∣∣m∣ : ∀ {m} → m ∣ (+ ∣ m ∣)
m∣∣m∣ = ∣ᵤ⇒∣ ℕ.∣-refl
∣m∣∣m : ∀ {m} → (+ ∣ m ∣) ∣ m
∣m∣∣m = ∣ᵤ⇒∣ ℕ.∣-refl
∣m∣n⇒∣m+n : ∀ {i m n} → i ∣ m → i ∣ n → i ∣ m + n
∣m∣n⇒∣m+n (divides q refl) (divides p refl) =
divides (q + p) (sym (*-distribʳ-+ _ q p))
∣m⇒∣-m : ∀ {i m} → i ∣ m → i ∣ - m
∣m⇒∣-m {i} {m} i∣m = ∣ᵤ⇒∣ $′ begin
∣ i ∣ ∣⟨ ∣⇒∣ᵤ i∣m ⟩
∣ m ∣ ≡⟨ sym (∣-i∣≡∣i∣ m) ⟩
∣ - m ∣ ∎
where open ℕ.∣-Reasoning
∣m∣n⇒∣m-n : ∀ {i m n} → i ∣ m → i ∣ n → i ∣ m - n
∣m∣n⇒∣m-n i∣m i∣n = ∣m∣n⇒∣m+n i∣m (∣m⇒∣-m i∣n)
∣m+n∣m⇒∣n : ∀ {i m n} → i ∣ m + n → i ∣ m → i ∣ n
∣m+n∣m⇒∣n {i} {m} {n} i∣m+n i∣m = begin
i ∣⟨ ∣m∣n⇒∣m-n i∣m+n i∣m ⟩
m + n - m ≡⟨ +-comm (m + n) (- m) ⟩
- m + (m + n) ≡⟨ sym (+-assoc (- m) m n) ⟩
- m + m + n ≡⟨ cong (_+ n) (+-inverseˡ m) ⟩
+ 0 + n ≡⟨ +-identityˡ n ⟩
n ∎
where open ∣-Reasoning
∣m+n∣n⇒∣m : ∀ {i m n} → i ∣ m + n → i ∣ n → i ∣ m
∣m+n∣n⇒∣m {m = m} {n} i|m+n i|n rewrite +-comm m n = ∣m+n∣m⇒∣n i|m+n i|n
∣n⇒∣m*n : ∀ {i} m {n} → i ∣ n → i ∣ m * n
∣n⇒∣m*n {i} m {n} (divides q eq) = divides (m * q) $′ begin
m * n ≡⟨ cong (m *_) eq ⟩
m * (q * i) ≡⟨ sym (*-assoc m q i) ⟩
m * q * i ∎
where open ≡-Reasoning
∣m⇒∣m*n : ∀ {i m} n → i ∣ m → i ∣ m * n
∣m⇒∣m*n {m = m} n i|m rewrite *-comm m n = ∣n⇒∣m*n n i|m
*-monoʳ-∣ : ∀ k → (k *_) Preserves _∣_ ⟶ _∣_
*-monoʳ-∣ k = ∣ᵤ⇒∣ ∘ Unsigned.*-monoʳ-∣ k ∘ ∣⇒∣ᵤ
*-monoˡ-∣ : ∀ k → (_* k) Preserves _∣_ ⟶ _∣_
*-monoˡ-∣ k {i} {j} = ∣ᵤ⇒∣ ∘ Unsigned.*-monoˡ-∣ k {i} {j} ∘ ∣⇒∣ᵤ
*-cancelˡ-∣ : ∀ k {i j} .{{_ : NonZero k}} → k * i ∣ k * j → i ∣ j
*-cancelˡ-∣ k = ∣ᵤ⇒∣ ∘ Unsigned.*-cancelˡ-∣ k ∘ ∣⇒∣ᵤ
*-cancelʳ-∣ : ∀ k {i j} .{{_ : NonZero k}} → i * k ∣ j * k → i ∣ j
*-cancelʳ-∣ k {i} {j} = ∣ᵤ⇒∣ ∘′ Unsigned.*-cancelʳ-∣ k {i} {j} ∘′ ∣⇒∣ᵤ