-
Notifications
You must be signed in to change notification settings - Fork 246
/
Copy pathBundles.agda
425 lines (343 loc) · 13 KB
/
Bundles.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
------------------------------------------------------------------------
-- The Agda standard library
--
-- Definitions of algebraic structures defined over some other
-- structure, like modules and vector spaces
--
-- Terminology of bundles:
-- * There are both *semimodules* and *modules*.
-- - For M an R-semimodule, R is a semiring, and M forms a commutative
-- monoid.
-- - For M an R-module, R is a ring, and M forms an Abelian group.
-- * There are all four of *left modules*, *right modules*, *bimodules*,
-- and *modules*.
-- - Left modules have a left-scaling operation.
-- - Right modules have a right-scaling operation.
-- - Bimodules have two sorts of scalars. Left-scaling handles one and
-- right-scaling handles the other. Left-scaling and right-scaling
-- are furthermore compatible.
-- - Modules are bimodules with a single sort of scalars and scalar
-- multiplication must also be commutative. Left-scaling and
-- right-scaling coincide.
------------------------------------------------------------------------
{-# OPTIONS --cubical-compatible --safe #-}
module Algebra.Module.Bundles where
open import Algebra.Bundles
open import Algebra.Core
open import Algebra.Definitions using (Involutive)
import Algebra.Module.Bundles.Raw as Raw
open import Algebra.Module.Core
open import Algebra.Module.Structures
open import Algebra.Module.Definitions
open import Algebra.Properties.Group
open import Function.Base
open import Level
open import Relation.Binary.Core using (Rel)
open import Relation.Nullary using (¬_)
import Relation.Binary.Reasoning.Setoid as ≈-Reasoning
private
variable
r ℓr s ℓs : Level
------------------------------------------------------------------------
-- Re-export definitions of 'raw' bundles
open Raw public
using ( RawLeftSemimodule; RawLeftModule
; RawRightSemimodule; RawRightModule
; RawBisemimodule; RawBimodule
; RawSemimodule; RawModule
)
------------------------------------------------------------------------
-- Left modules
------------------------------------------------------------------------
record LeftSemimodule (semiring : Semiring r ℓr) m ℓm
: Set (r ⊔ ℓr ⊔ suc (m ⊔ ℓm)) where
open Semiring semiring
infixr 7 _*ₗ_
infixl 6 _+ᴹ_
infix 4 _≈ᴹ_
field
Carrierᴹ : Set m
_≈ᴹ_ : Rel Carrierᴹ ℓm
_+ᴹ_ : Op₂ Carrierᴹ
_*ₗ_ : Opₗ Carrier Carrierᴹ
0ᴹ : Carrierᴹ
isLeftSemimodule : IsLeftSemimodule semiring _≈ᴹ_ _+ᴹ_ 0ᴹ _*ₗ_
open IsLeftSemimodule isLeftSemimodule public
+ᴹ-commutativeMonoid : CommutativeMonoid m ℓm
+ᴹ-commutativeMonoid = record
{ isCommutativeMonoid = +ᴹ-isCommutativeMonoid
}
open CommutativeMonoid +ᴹ-commutativeMonoid public
using () renaming
( monoid to +ᴹ-monoid
; semigroup to +ᴹ-semigroup
; magma to +ᴹ-magma
; rawMagma to +ᴹ-rawMagma
; rawMonoid to +ᴹ-rawMonoid
; _≉_ to _≉ᴹ_
)
rawLeftSemimodule : RawLeftSemimodule Carrier m ℓm
rawLeftSemimodule = record
{ _≈ᴹ_ = _≈ᴹ_
; _+ᴹ_ = _+ᴹ_
; _*ₗ_ = _*ₗ_
; 0ᴹ = 0ᴹ
}
record LeftModule (ring : Ring r ℓr) m ℓm : Set (r ⊔ ℓr ⊔ suc (m ⊔ ℓm)) where
open Ring ring
infixr 8 -ᴹ_
infixr 7 _*ₗ_
infixl 6 _+ᴹ_
infix 4 _≈ᴹ_
field
Carrierᴹ : Set m
_≈ᴹ_ : Rel Carrierᴹ ℓm
_+ᴹ_ : Op₂ Carrierᴹ
_*ₗ_ : Opₗ Carrier Carrierᴹ
0ᴹ : Carrierᴹ
-ᴹ_ : Op₁ Carrierᴹ
isLeftModule : IsLeftModule ring _≈ᴹ_ _+ᴹ_ 0ᴹ -ᴹ_ _*ₗ_
open IsLeftModule isLeftModule public
leftSemimodule : LeftSemimodule semiring m ℓm
leftSemimodule = record { isLeftSemimodule = isLeftSemimodule }
open LeftSemimodule leftSemimodule public
using ( +ᴹ-commutativeMonoid; +ᴹ-monoid; +ᴹ-semigroup; +ᴹ-magma
; +ᴹ-rawMagma; +ᴹ-rawMonoid; rawLeftSemimodule; _≉ᴹ_)
+ᴹ-abelianGroup : AbelianGroup m ℓm
+ᴹ-abelianGroup = record { isAbelianGroup = +ᴹ-isAbelianGroup }
open AbelianGroup +ᴹ-abelianGroup public
using () renaming (group to +ᴹ-group; rawGroup to +ᴹ-rawGroup)
rawLeftModule : RawLeftModule Carrier m ℓm
rawLeftModule = record
{ _≈ᴹ_ = _≈ᴹ_
; _+ᴹ_ = _+ᴹ_
; _*ₗ_ = _*ₗ_
; 0ᴹ = 0ᴹ
; -ᴹ_ = -ᴹ_
}
------------------------------------------------------------------------
-- Right modules
------------------------------------------------------------------------
record RightSemimodule (semiring : Semiring r ℓr) m ℓm
: Set (r ⊔ ℓr ⊔ suc (m ⊔ ℓm)) where
open Semiring semiring
infixl 7 _*ᵣ_
infixl 6 _+ᴹ_
infix 4 _≈ᴹ_
field
Carrierᴹ : Set m
_≈ᴹ_ : Rel Carrierᴹ ℓm
_+ᴹ_ : Op₂ Carrierᴹ
_*ᵣ_ : Opᵣ Carrier Carrierᴹ
0ᴹ : Carrierᴹ
isRightSemimodule : IsRightSemimodule semiring _≈ᴹ_ _+ᴹ_ 0ᴹ _*ᵣ_
open IsRightSemimodule isRightSemimodule public
+ᴹ-commutativeMonoid : CommutativeMonoid m ℓm
+ᴹ-commutativeMonoid = record
{ isCommutativeMonoid = +ᴹ-isCommutativeMonoid
}
open CommutativeMonoid +ᴹ-commutativeMonoid public
using () renaming
( monoid to +ᴹ-monoid
; semigroup to +ᴹ-semigroup
; magma to +ᴹ-magma
; rawMagma to +ᴹ-rawMagma
; rawMonoid to +ᴹ-rawMonoid
; _≉_ to _≉ᴹ_
)
rawRightSemimodule : RawRightSemimodule Carrier m ℓm
rawRightSemimodule = record
{ _≈ᴹ_ = _≈ᴹ_
; _+ᴹ_ = _+ᴹ_
; _*ᵣ_ = _*ᵣ_
; 0ᴹ = 0ᴹ
}
record RightModule (ring : Ring r ℓr) m ℓm : Set (r ⊔ ℓr ⊔ suc (m ⊔ ℓm)) where
open Ring ring
infixr 8 -ᴹ_
infixl 7 _*ᵣ_
infixl 6 _+ᴹ_
infix 4 _≈ᴹ_
field
Carrierᴹ : Set m
_≈ᴹ_ : Rel Carrierᴹ ℓm
_+ᴹ_ : Op₂ Carrierᴹ
_*ᵣ_ : Opᵣ Carrier Carrierᴹ
0ᴹ : Carrierᴹ
-ᴹ_ : Op₁ Carrierᴹ
isRightModule : IsRightModule ring _≈ᴹ_ _+ᴹ_ 0ᴹ -ᴹ_ _*ᵣ_
open IsRightModule isRightModule public
rightSemimodule : RightSemimodule semiring m ℓm
rightSemimodule = record { isRightSemimodule = isRightSemimodule }
open RightSemimodule rightSemimodule public
using ( +ᴹ-commutativeMonoid; +ᴹ-monoid; +ᴹ-semigroup; +ᴹ-magma
; +ᴹ-rawMagma; +ᴹ-rawMonoid; rawRightSemimodule; _≉ᴹ_)
+ᴹ-abelianGroup : AbelianGroup m ℓm
+ᴹ-abelianGroup = record { isAbelianGroup = +ᴹ-isAbelianGroup }
open AbelianGroup +ᴹ-abelianGroup public
using () renaming (group to +ᴹ-group; rawGroup to +ᴹ-rawGroup)
rawRightModule : RawRightModule Carrier m ℓm
rawRightModule = record
{ _≈ᴹ_ = _≈ᴹ_
; _+ᴹ_ = _+ᴹ_
; _*ᵣ_ = _*ᵣ_
; 0ᴹ = 0ᴹ
; -ᴹ_ = -ᴹ_
}
------------------------------------------------------------------------
-- Bimodules
------------------------------------------------------------------------
record Bisemimodule (R-semiring : Semiring r ℓr) (S-semiring : Semiring s ℓs)
m ℓm : Set (r ⊔ s ⊔ ℓr ⊔ ℓs ⊔ suc (m ⊔ ℓm)) where
private
module R = Semiring R-semiring
module S = Semiring S-semiring
infixr 7 _*ₗ_
infixl 7 _*ᵣ_
infixl 6 _+ᴹ_
infix 4 _≈ᴹ_
field
Carrierᴹ : Set m
_≈ᴹ_ : Rel Carrierᴹ ℓm
_+ᴹ_ : Op₂ Carrierᴹ
_*ₗ_ : Opₗ R.Carrier Carrierᴹ
_*ᵣ_ : Opᵣ S.Carrier Carrierᴹ
0ᴹ : Carrierᴹ
isBisemimodule : IsBisemimodule R-semiring S-semiring _≈ᴹ_ _+ᴹ_ 0ᴹ _*ₗ_ _*ᵣ_
open IsBisemimodule isBisemimodule public
leftSemimodule : LeftSemimodule R-semiring m ℓm
leftSemimodule = record { isLeftSemimodule = isLeftSemimodule }
rightSemimodule : RightSemimodule S-semiring m ℓm
rightSemimodule = record { isRightSemimodule = isRightSemimodule }
open LeftSemimodule leftSemimodule public
using ( +ᴹ-commutativeMonoid; +ᴹ-monoid; +ᴹ-semigroup; +ᴹ-magma; +ᴹ-rawMagma
; +ᴹ-rawMonoid; rawLeftSemimodule; _≉ᴹ_)
open RightSemimodule rightSemimodule public
using ( rawRightSemimodule )
rawBisemimodule : RawBisemimodule R.Carrier S.Carrier m ℓm
rawBisemimodule = record
{ _≈ᴹ_ = _≈ᴹ_
; _+ᴹ_ = _+ᴹ_
; _*ₗ_ = _*ₗ_
; _*ᵣ_ = _*ᵣ_
; 0ᴹ = 0ᴹ
}
record Bimodule (R-ring : Ring r ℓr) (S-ring : Ring s ℓs) m ℓm
: Set (r ⊔ s ⊔ ℓr ⊔ ℓs ⊔ suc (m ⊔ ℓm)) where
private
module R = Ring R-ring
module S = Ring S-ring
infix 8 -ᴹ_
infixr 7 _*ₗ_
infixl 7 _*ᵣ_
infixl 6 _+ᴹ_
infix 4 _≈ᴹ_
field
Carrierᴹ : Set m
_≈ᴹ_ : Rel Carrierᴹ ℓm
_+ᴹ_ : Op₂ Carrierᴹ
_*ₗ_ : Opₗ R.Carrier Carrierᴹ
_*ᵣ_ : Opᵣ S.Carrier Carrierᴹ
0ᴹ : Carrierᴹ
-ᴹ_ : Op₁ Carrierᴹ
isBimodule : IsBimodule R-ring S-ring _≈ᴹ_ _+ᴹ_ 0ᴹ -ᴹ_ _*ₗ_ _*ᵣ_
open IsBimodule isBimodule public
leftModule : LeftModule R-ring m ℓm
leftModule = record { isLeftModule = isLeftModule }
rightModule : RightModule S-ring m ℓm
rightModule = record { isRightModule = isRightModule }
open LeftModule leftModule public
using ( +ᴹ-abelianGroup; +ᴹ-commutativeMonoid; +ᴹ-group; +ᴹ-monoid
; +ᴹ-semigroup; +ᴹ-magma; +ᴹ-rawMagma; +ᴹ-rawMonoid; +ᴹ-rawGroup
; rawLeftSemimodule; rawLeftModule; _≉ᴹ_)
open RightModule rightModule public
using ( rawRightSemimodule; rawRightModule )
bisemimodule : Bisemimodule R.semiring S.semiring m ℓm
bisemimodule = record { isBisemimodule = isBisemimodule }
open Bisemimodule bisemimodule public
using (leftSemimodule; rightSemimodule; rawBisemimodule)
rawBimodule : RawBimodule R.Carrier S.Carrier m ℓm
rawBimodule = record
{ _≈ᴹ_ = _≈ᴹ_
; _+ᴹ_ = _+ᴹ_
; _*ₗ_ = _*ₗ_
; _*ᵣ_ = _*ᵣ_
; 0ᴹ = 0ᴹ
; -ᴹ_ = -ᴹ_
}
------------------------------------------------------------------------
-- Modules over commutative structures
------------------------------------------------------------------------
record Semimodule (commutativeSemiring : CommutativeSemiring r ℓr) m ℓm
: Set (r ⊔ ℓr ⊔ suc (m ⊔ ℓm)) where
open CommutativeSemiring commutativeSemiring
infixr 7 _*ₗ_
infixl 7 _*ᵣ_
infixl 6 _+ᴹ_
infix 4 _≈ᴹ_
field
Carrierᴹ : Set m
_≈ᴹ_ : Rel Carrierᴹ ℓm
_+ᴹ_ : Op₂ Carrierᴹ
_*ₗ_ : Opₗ Carrier Carrierᴹ
_*ᵣ_ : Opᵣ Carrier Carrierᴹ
0ᴹ : Carrierᴹ
isSemimodule : IsSemimodule commutativeSemiring _≈ᴹ_ _+ᴹ_ 0ᴹ _*ₗ_ _*ᵣ_
open IsSemimodule isSemimodule public
private
module L = LeftDefs Carrier _≈ᴹ_
module R = RightDefs Carrier _≈ᴹ_
bisemimodule : Bisemimodule semiring semiring m ℓm
bisemimodule = record { isBisemimodule = isBisemimodule }
open Bisemimodule bisemimodule public
using ( leftSemimodule; rightSemimodule
; +ᴹ-commutativeMonoid; +ᴹ-monoid; +ᴹ-semigroup; +ᴹ-magma
; +ᴹ-rawMagma; +ᴹ-rawMonoid; rawLeftSemimodule; rawRightSemimodule
; rawBisemimodule; _≉ᴹ_
)
open ≈-Reasoning ≈ᴹ-setoid
*ₗ-comm : L.Commutative _*ₗ_
*ₗ-comm x y m = begin
x *ₗ y *ₗ m ≈⟨ ≈ᴹ-sym (*ₗ-assoc x y m) ⟩
(x * y) *ₗ m ≈⟨ *ₗ-cong (*-comm _ _) ≈ᴹ-refl ⟩
(y * x) *ₗ m ≈⟨ *ₗ-assoc y x m ⟩
y *ₗ x *ₗ m ∎
*ᵣ-comm : R.Commutative _*ᵣ_
*ᵣ-comm m x y = begin
m *ᵣ x *ᵣ y ≈⟨ *ᵣ-assoc m x y ⟩
m *ᵣ (x * y) ≈⟨ *ᵣ-cong ≈ᴹ-refl (*-comm _ _) ⟩
m *ᵣ (y * x) ≈⟨ ≈ᴹ-sym (*ᵣ-assoc m y x) ⟩
m *ᵣ y *ᵣ x ∎
rawSemimodule : RawSemimodule Carrier m ℓm
rawSemimodule = rawBisemimodule
record Module (commutativeRing : CommutativeRing r ℓr) m ℓm
: Set (r ⊔ ℓr ⊔ suc (m ⊔ ℓm)) where
open CommutativeRing commutativeRing
infixr 8 -ᴹ_
infixr 7 _*ₗ_
infixl 7 _*ᵣ_
infixl 6 _+ᴹ_
infix 4 _≈ᴹ_
field
Carrierᴹ : Set m
_≈ᴹ_ : Rel Carrierᴹ ℓm
_+ᴹ_ : Op₂ Carrierᴹ
_*ₗ_ : Opₗ Carrier Carrierᴹ
_*ᵣ_ : Opᵣ Carrier Carrierᴹ
0ᴹ : Carrierᴹ
-ᴹ_ : Op₁ Carrierᴹ
isModule : IsModule commutativeRing _≈ᴹ_ _+ᴹ_ 0ᴹ -ᴹ_ _*ₗ_ _*ᵣ_
open IsModule isModule public
bimodule : Bimodule ring ring m ℓm
bimodule = record { isBimodule = isBimodule }
open Bimodule bimodule public
using ( leftModule; rightModule; leftSemimodule; rightSemimodule
; +ᴹ-abelianGroup; +ᴹ-group; +ᴹ-commutativeMonoid; +ᴹ-monoid
; +ᴹ-semigroup; +ᴹ-magma ; +ᴹ-rawMonoid; +ᴹ-rawMagma
; +ᴹ-rawGroup; rawLeftSemimodule; rawLeftModule; rawRightSemimodule
; rawRightModule; rawBisemimodule; rawBimodule; _≉ᴹ_)
semimodule : Semimodule commutativeSemiring m ℓm
semimodule = record { isSemimodule = isSemimodule }
open Semimodule semimodule public using (*ₗ-comm; *ᵣ-comm; rawSemimodule)
rawModule : RawModule Carrier m ℓm
rawModule = rawBimodule