Skip to content

Commit 07fb204

Browse files
authored
New functions take-drop-1 and take-one-more added to Data.List.Properties (#1984)
1 parent d6edda0 commit 07fb204

File tree

2 files changed

+30
-1
lines changed

2 files changed

+30
-1
lines changed

CHANGELOG.md

+7-1
Original file line numberDiff line numberDiff line change
@@ -2152,8 +2152,14 @@ Other minor changes
21522152
21532153
length-isMagmaHomomorphism : (A : Set a) → IsMagmaHomomorphism (++-rawMagma A) +-rawMagma length
21542154
length-isMonoidHomomorphism : (A : Set a) → IsMonoidHomomorphism (++-[]-rawMonoid A) +-0-rawMonoid length
2155+
2156+
take-suc : (o : Fin (length xs)) → let m = toℕ o in take (suc m) xs ≡ take m xs ∷ʳ lookup xs o
2157+
take-suc-tabulate : (f : Fin n → A) (o : Fin n) → let m = toℕ o in take (suc m) (tabulate f) ≡ take m (tabulate f) ∷ʳ f o
2158+
drop-take-suc : (o : Fin (length xs)) → let m = toℕ o in drop m (take (suc m) xs) ≡ [ lookup xs o ]
2159+
drop-take-suc-tabulate : (f : Fin n → A) (o : Fin n) → let m = toℕ o in drop m (take (suc m) (tabulate f)) ≡ [ f o ]
21552160
21562161
take-all : n ≥ length xs → take n xs ≡ xs
2162+
21572163
take-[] : ∀ m → take m [] ≡ []
21582164
drop-[] : ∀ m → drop m [] ≡ []
21592165
```
@@ -2887,7 +2893,7 @@ Other minor changes
28872893
foldr-map : foldr f x (map g xs) ≡ foldr (g -⟨ f ∣) x xs
28882894
foldl-map : foldl f x (map g xs) ≡ foldl (∣ f ⟩- g) x xs
28892895
```
2890-
2896+
28912897
NonZero/Positive/Negative changes
28922898
---------------------------------
28932899

src/Data/List/Properties.agda

+23
Original file line numberDiff line numberDiff line change
@@ -30,6 +30,7 @@ open import Data.Product.Base as Prod
3030
import Data.Product.Relation.Unary.All as Prod using (All)
3131
open import Data.Sum.Base using (_⊎_; inj₁; inj₂)
3232
open import Data.These.Base as These using (These; this; that; these)
33+
open import Data.Fin.Properties using (toℕ-cast)
3334
open import Function
3435
open import Level using (Level)
3536
open import Relation.Binary as B using (DecidableEquality)
@@ -759,6 +760,16 @@ length-take zero xs = refl
759760
length-take (suc n) [] = refl
760761
length-take (suc n) (x ∷ xs) = cong suc (length-take n xs)
761762

763+
take-suc : (xs : List A) (i : Fin (length xs)) let m = toℕ i in
764+
take (suc m) xs ≡ take m xs ∷ʳ lookup xs i
765+
take-suc (x ∷ xs) zero = refl
766+
take-suc (x ∷ xs) (suc i) = cong (x ∷_) (take-suc xs i)
767+
768+
take-suc-tabulate : {n} (f : Fin n A) (i : Fin n) let m = toℕ i in
769+
take (suc m) (tabulate f) ≡ take m (tabulate f) ∷ʳ f i
770+
take-suc-tabulate f i rewrite sym (toℕ-cast (sym (length-tabulate f)) i) | sym (lookup-tabulate f i)
771+
= take-suc (tabulate f) (cast _ i)
772+
762773
-- If you take at least as many elements from a list as it has, you get the whole list.
763774
take-all :(n : ℕ) (xs : List A) n ≥ length xs take n xs ≡ xs
764775
take-all zero [] _ = refl
@@ -789,6 +800,16 @@ take++drop zero xs = refl
789800
take++drop (suc n) [] = refl
790801
take++drop (suc n) (x ∷ xs) = cong (x ∷_) (take++drop n xs)
791802

803+
drop-take-suc : (xs : List A) (i : Fin (length xs)) let m = toℕ i in
804+
drop m (take (suc m) xs) ≡ [ lookup xs i ]
805+
drop-take-suc (x ∷ xs) zero = refl
806+
drop-take-suc (x ∷ xs) (suc i) = drop-take-suc xs i
807+
808+
drop-take-suc-tabulate : {n} (f : Fin n A) (i : Fin n) let m = toℕ i in
809+
drop m (take (suc m) (tabulate f)) ≡ [ f i ]
810+
drop-take-suc-tabulate f i rewrite sym (toℕ-cast (sym (length-tabulate f)) i) | sym (lookup-tabulate f i)
811+
= drop-take-suc (tabulate f) (cast _ i)
812+
792813
------------------------------------------------------------------------
793814
-- splitAt
794815

@@ -1093,6 +1114,8 @@ module _ {x y : A} where
10931114
∷ʳ-++ : (xs : List A) (a : A) (ys : List A) xs ∷ʳ a ++ ys ≡ xs ++ a ∷ ys
10941115
∷ʳ-++ xs a ys = ++-assoc xs [ a ] ys
10951116

1117+
1118+
10961119
------------------------------------------------------------------------
10971120
-- DEPRECATED
10981121
------------------------------------------------------------------------

0 commit comments

Comments
 (0)