Skip to content

Commit 2fe12da

Browse files
authored
Qualified import of Data.Sum.Base fixing #2280 (#2290)
* Qualified import of `Data.Sum.Base as Sum` * resolve merge conflict in favour of #2293
1 parent 079b98c commit 2fe12da

File tree

3 files changed

+21
-21
lines changed

3 files changed

+21
-21
lines changed

src/Codata/Sized/Delay.agda

+3-3
Original file line numberDiff line numberDiff line change
@@ -16,9 +16,9 @@ open import Data.Empty
1616
open import Relation.Nullary
1717
open import Data.Nat.Base
1818
open import Data.Maybe.Base hiding (map ; fromMaybe ; zipWith ; alignWith ; zip ; align)
19-
open import Data.Product.Base as P hiding (map ; zip)
20-
open import Data.Sum.Base as S hiding (map)
21-
open import Data.These.Base as T using (These; this; that; these)
19+
open import Data.Product.Base hiding (map ; zip)
20+
open import Data.Sum.Base hiding (map)
21+
open import Data.These.Base using (These; this; that; these)
2222
open import Function.Base using (id)
2323

2424
------------------------------------------------------------------------

src/Data/Container/Combinator.agda

+16-16
Original file line numberDiff line numberDiff line change
@@ -10,8 +10,8 @@ module Data.Container.Combinator where
1010

1111
open import Level using (Level; _⊔_; lower)
1212
open import Data.Empty.Polymorphic using (⊥; ⊥-elim)
13-
open import Data.Product.Base as P using (_,_; <_,_>; proj₁; proj₂; ∃)
14-
open import Data.Sum.Base as S using ([_,_]′)
13+
open import Data.Product.Base as Product using (_,_; <_,_>; proj₁; proj₂; ∃)
14+
open import Data.Sum.Base as Sum using ([_,_]′)
1515
open import Data.Unit.Polymorphic.Base using (⊤)
1616
import Function.Base as F
1717

@@ -58,25 +58,25 @@ module _ {s₁ s₂ p₁ p₂} (C₁ : Container s₁ p₁) (C₂ : Container s
5858
_∘_ .Position = ◇ C₁ (Position C₂)
5959

6060
to-∘ : {a} {A : Set a} ⟦ C₁ ⟧ (⟦ C₂ ⟧ A) ⟦ _∘_ ⟧ A
61-
to-∘ (s , f) = ((s , proj₁ F.∘ f) , P.uncurry (proj₂ F.∘ f) F.∘′ ◇.proof)
61+
to-∘ (s , f) = ((s , proj₁ F.∘ f) , Product.uncurry (proj₂ F.∘ f) F.∘′ ◇.proof)
6262

6363
from-∘ : {a} {A : Set a} ⟦ _∘_ ⟧ A ⟦ C₁ ⟧ (⟦ C₂ ⟧ A)
64-
from-∘ ((s , f) , g) = (s , < f , P.curry (g F.∘′ any) >)
64+
from-∘ ((s , f) , g) = (s , < f , Product.curry (g F.∘′ any) >)
6565

6666
-- Product. (Note that, up to isomorphism, this is a special case of
6767
-- indexed product.)
6868

6969
infixr 2 _×_
7070

7171
_×_ : Container (s₁ ⊔ s₂) (p₁ ⊔ p₂)
72-
_×_ .Shape = Shape C₁ P.× Shape C₂
73-
_×_ .Position = P.uncurry λ s₁ s₂ (Position C₁ s₁) S.⊎ (Position C₂ s₂)
72+
_×_ .Shape = Shape C₁ Product.× Shape C₂
73+
_×_ .Position = Product.uncurry λ s₁ s₂ (Position C₁ s₁) Sum.⊎ (Position C₂ s₂)
7474

75-
to-× : {a} {A : Set a} ⟦ C₁ ⟧ A P.× ⟦ C₂ ⟧ A ⟦ _×_ ⟧ A
75+
to-× : {a} {A : Set a} ⟦ C₁ ⟧ A Product.× ⟦ C₂ ⟧ A ⟦ _×_ ⟧ A
7676
to-× ((s₁ , f₁) , (s₂ , f₂)) = ((s₁ , s₂) , [ f₁ , f₂ ]′)
7777

78-
from-× : {a} {A : Set a} ⟦ _×_ ⟧ A ⟦ C₁ ⟧ A P.× ⟦ C₂ ⟧ A
79-
from-× ((s₁ , s₂) , f) = ((s₁ , f F.∘ S.inj₁) , (s₂ , f F.∘ S.inj₂))
78+
from-× : {a} {A : Set a} ⟦ _×_ ⟧ A ⟦ C₁ ⟧ A Product.× ⟦ C₂ ⟧ A
79+
from-× ((s₁ , s₂) , f) = ((s₁ , f F.∘ Sum.inj₁) , (s₂ , f F.∘ Sum.inj₂))
8080

8181
-- Indexed product.
8282

@@ -87,7 +87,7 @@ module _ {i s p} (I : Set i) (Cᵢ : I → Container s p) where
8787
Π .Position = λ s λ i Position (Cᵢ i) (s i)
8888

8989
to-Π : {a} {A : Set a} ( i ⟦ Cᵢ i ⟧ A) ⟦ Π ⟧ A
90-
to-Π f = (proj₁ F.∘ f , P.uncurry (proj₂ F.∘ f))
90+
to-Π f = (proj₁ F.∘ f , Product.uncurry (proj₂ F.∘ f))
9191

9292
from-Π : {a} {A : Set a} ⟦ Π ⟧ A i ⟦ Cᵢ i ⟧ A
9393
from-Π (s , f) = λ i (s i , λ p f (i , p))
@@ -108,15 +108,15 @@ module _ {s₁ s₂ p} (C₁ : Container s₁ p) (C₂ : Container s₂ p) where
108108
infixr 1 _⊎_
109109

110110
_⊎_ : Container (s₁ ⊔ s₂) p
111-
_⊎_ .Shape = (Shape C₁ S.⊎ Shape C₂)
111+
_⊎_ .Shape = (Shape C₁ Sum.⊎ Shape C₂)
112112
_⊎_ .Position = [ Position C₁ , Position C₂ ]′
113113

114-
to-⊎ : {a} {A : Set a} ⟦ C₁ ⟧ A S.⊎ ⟦ C₂ ⟧ A ⟦ _⊎_ ⟧ A
115-
to-⊎ = [ P.map S.inj₁ F.id , P.map S.inj₂ F.id ]′
114+
to-⊎ : {a} {A : Set a} ⟦ C₁ ⟧ A Sum.⊎ ⟦ C₂ ⟧ A ⟦ _⊎_ ⟧ A
115+
to-⊎ = [ Product.map Sum.inj₁ F.id , Product.map Sum.inj₂ F.id ]′
116116

117-
from-⊎ : {a} {A : Set a} ⟦ _⊎_ ⟧ A ⟦ C₁ ⟧ A S.⊎ ⟦ C₂ ⟧ A
118-
from-⊎ (S.inj₁ s₁ , f) = S.inj₁ (s₁ , f)
119-
from-⊎ (S.inj₂ s₂ , f) = S.inj₂ (s₂ , f)
117+
from-⊎ : {a} {A : Set a} ⟦ _⊎_ ⟧ A ⟦ C₁ ⟧ A Sum.⊎ ⟦ C₂ ⟧ A
118+
from-⊎ (Sum.inj₁ s₁ , f) = Sum.inj₁ (s₁ , f)
119+
from-⊎ (Sum.inj₂ s₂ , f) = Sum.inj₂ (s₂ , f)
120120

121121
-- Indexed sum.
122122

src/Data/Container/Combinator/Properties.agda

+2-2
Original file line numberDiff line numberDiff line change
@@ -13,7 +13,7 @@ open import Data.Container.Core
1313
open import Data.Container.Combinator
1414
open import Data.Container.Relation.Unary.Any
1515
open import Data.Empty using (⊥-elim)
16-
open import Data.Product.Base as Prod using (∃; _,_; proj₁; proj₂; <_,_>; uncurry; curry)
16+
open import Data.Product.Base as P using (∃; _,_; proj₁; proj₂; <_,_>; uncurry; curry)
1717
open import Data.Sum.Base as S using (inj₁; inj₂; [_,_]′; [_,_])
1818
open import Function.Base as F using (_∘′_)
1919
open import Function.Bundles
@@ -45,7 +45,7 @@ module Composition {s₁ s₂ p₁ p₂} (C₁ : Container s₁ p₁) (C₂ : Co
4545
module Product (ext : {ℓ ℓ′} Extensionality ℓ ℓ′)
4646
{s₁ s₂ p₁ p₂} (C₁ : Container s₁ p₁) (C₂ : Container s₂ p₂) where
4747

48-
correct : {x} {X : Set x} ⟦ C₁ × C₂ ⟧ X ↔ (⟦ C₁ ⟧ X Prod.× ⟦ C₂ ⟧ X)
48+
correct : {x} {X : Set x} ⟦ C₁ × C₂ ⟧ X ↔ (⟦ C₁ ⟧ X P.× ⟦ C₂ ⟧ X)
4949
correct {X = X} = mk↔ₛ′ (from-× C₁ C₂) (to-× C₁ C₂) (λ _ refl) from∘to
5050
where
5151
from∘to : (to-× C₁ C₂) F.∘ (from-× C₁ C₂) ≗ F.id

0 commit comments

Comments
 (0)