Skip to content

Commit 36ea6ac

Browse files
authored
Sublists: generalize disjoint-union-is-cospan to upper-bound-is-cospan (#2320)
* Sublists: generalize disjoint-union-is-cospan to upper-bound-is-cospan The disjointness assumption is superfluous. * Move sublist cospan stuff to new module SubList.Propositional.Slice * CHANGELOG
1 parent d89d895 commit 36ea6ac

File tree

5 files changed

+159
-48
lines changed

5 files changed

+159
-48
lines changed

CHANGELOG.md

+19-5
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11
Version 2.1-dev
22
===============
33

4-
The library has been tested using Agda 2.6.4 and 2.6.4.1.
4+
The library has been tested using Agda 2.6.4, 2.6.4.1, and 2.6.4.3.
55

66
Highlights
77
----------
@@ -33,6 +33,9 @@ Other major improvements
3333
Deprecated modules
3434
------------------
3535

36+
* `Data.List.Relation.Binary.Sublist.Propositional.Disjoint` deprecated in favour of
37+
`Data.List.Relation.Binary.Sublist.Propositional.Slice`.
38+
3639
Deprecated names
3740
----------------
3841

@@ -80,6 +83,12 @@ New modules
8083
Algebra.Module.Construct.Idealization
8184
```
8285

86+
* `Data.List.Relation.Binary.Sublist.Propositional.Slice`
87+
replacing `Data.List.Relation.Binary.Sublist.Propositional.Disjoint` (*)
88+
and adding new functions:
89+
- `⊆-upper-bound-is-cospan` generalising `⊆-disjoint-union-is-cospan` from (*)
90+
- `⊆-upper-bound-cospan` generalising `⊆-disjoint-union-cospan` from (*)
91+
8392
* `Data.Vec.Functional.Relation.Binary.Permutation`, defining:
8493
```agda
8594
_↭_ : IRel (Vector A) _
@@ -170,7 +179,7 @@ Additions to existing modules
170179
quasigroup : Quasigroup _ _
171180
isLoop : IsLoop _∙_ _\\_ _//_ ε
172181
loop : Loop _ _
173-
182+
174183
\\-leftDividesˡ : LeftDividesˡ _∙_ _\\_
175184
\\-leftDividesʳ : LeftDividesʳ _∙_ _\\_
176185
\\-leftDivides : LeftDivides _∙_ _\\_
@@ -189,7 +198,7 @@ Additions to existing modules
189198
identityʳ-unique : x ∙ y ≈ x → y ≈ ε
190199
identity-unique : Identity x _∙_ → x ≈ ε
191200
```
192-
201+
193202
* In `Algebra.Construct.Terminal`:
194203
```agda
195204
rawNearSemiring : RawNearSemiring c ℓ
@@ -218,7 +227,7 @@ Additions to existing modules
218227
_\\_ : Op₂ A
219228
x \\ y = (x ⁻¹) ∙ y
220229
```
221-
230+
222231
* In `Data.Container.Indexed.Core`:
223232
```agda
224233
Subtrees o c = (r : Response c) → X (next c r)
@@ -301,6 +310,11 @@ Additions to existing modules
301310
pointwise⊆any : Pointwise R (just x) ⊆ Any (R x)
302311
```
303312

313+
* In `Data.List.Relation.Binary.Sublist.Setoid`:
314+
```agda
315+
⊆-upper-bound : ∀ {xs ys zs} (τ : xs ⊆ zs) (σ : ys ⊆ zs) → UpperBound τ σ
316+
```
317+
304318
* In `Data.Nat.Divisibility`:
305319
```agda
306320
quotient≢0 : m ∣ n → .{{NonZero n}} → NonZero quotient
@@ -327,7 +341,7 @@ Additions to existing modules
327341
pred-injective : .{{NonZero m}} → .{{NonZero n}} → pred m ≡ pred n → m ≡ n
328342
pred-cancel-≡ : pred m ≡ pred n → ((m ≡ 0 × n ≡ 1) ⊎ (m ≡ 1 × n ≡ 0)) ⊎ m ≡ n
329343
```
330-
344+
331345
* Added new proofs to `Data.Nat.Primality`:
332346
```agda
333347
rough∧square>⇒prime : .{{NonTrivial n}} → m Rough n → m * m > n → Prime n
Original file line numberDiff line numberDiff line change
@@ -1,34 +1,33 @@
11
------------------------------------------------------------------------
22
-- The Agda standard library
33
--
4-
-- Sublist-related properties
4+
-- This module is DEPRECATED.
5+
-- Please use `Data.List.Relation.Binary.Sublist.Propositional.Slice`
6+
-- instead.
57
------------------------------------------------------------------------
68

79
{-# OPTIONS --cubical-compatible --safe #-}
810

911
module Data.List.Relation.Binary.Sublist.Propositional.Disjoint
1012
{a} {A : Set a} where
1113

14+
{-# WARNING_ON_IMPORT
15+
"Data.List.Relation.Binary.Sublist.Propositional.Disjoint was deprecated in v2.1.
16+
Use Data.List.Relation.Binary.Sublist.Propositional.Slice instead."
17+
#-}
18+
1219
open import Data.List.Base using (List)
13-
open import Data.List.Relation.Binary.Sublist.Propositional
20+
open import Data.List.Relation.Binary.Sublist.Propositional using
21+
( _⊆_; _∷_; _∷ʳ_
22+
; Disjoint; ⊆-disjoint-union; _∷ₙ_; _∷ₗ_; _∷ᵣ_
23+
)
24+
import Data.List.Relation.Binary.Sublist.Propositional.Slice as SPSlice
1425
open import Relation.Binary.PropositionalEquality.Core using (_≡_; refl; cong)
1526

16-
------------------------------------------------------------------------
17-
-- A Union where the triangles commute is a
18-
-- Cospan in the slice category (_ ⊆ zs).
19-
20-
record IsCospan {xs ys zs : List A} {τ₁ : xs ⊆ zs} {τ₂ : ys ⊆ zs} (u : UpperBound τ₁ τ₂) : Set a where
21-
field
22-
tri₁ : ⊆-trans (UpperBound.inj₁ u) (UpperBound.sub u) ≡ τ₁
23-
tri₂ : ⊆-trans (UpperBound.inj₂ u) (UpperBound.sub u) ≡ τ₂
27+
open SPSlice using (⊆-upper-bound-is-cospan; ⊆-upper-bound-cospan)
2428

25-
record Cospan {xs ys zs : List A} (τ₁ : xs ⊆ zs) (τ₂ : ys ⊆ zs) : Set a where
26-
field
27-
upperBound : UpperBound τ₁ τ₂
28-
isCospan : IsCospan upperBound
29-
30-
open UpperBound upperBound public
31-
open IsCospan isCospan public
29+
-- For backward compatibility reexport these:
30+
open SPSlice public using ( IsCospan; Cospan )
3231

3332
open IsCospan
3433
open Cospan
@@ -57,14 +56,18 @@ module _
5756

5857
⊆-disjoint-union-is-cospan : {xs ys zs : List A} {τ₁ : xs ⊆ zs} {τ₂ : ys ⊆ zs}
5958
(d : Disjoint τ₁ τ₂) IsCospan (⊆-disjoint-union d)
60-
⊆-disjoint-union-is-cospan [] = record { tri₁ = refl ; tri₂ = refl }
61-
⊆-disjoint-union-is-cospan (x ∷ₙ d) = ∷ₙ-cospan d (⊆-disjoint-union-is-cospan d)
62-
⊆-disjoint-union-is-cospan (refl ∷ₗ d) = ∷ₗ-cospan d (⊆-disjoint-union-is-cospan d)
63-
⊆-disjoint-union-is-cospan (refl ∷ᵣ d) = ∷ᵣ-cospan d (⊆-disjoint-union-is-cospan d)
59+
⊆-disjoint-union-is-cospan {τ₁ = τ₁} {τ₂ = τ₂} _ = ⊆-upper-bound-is-cospan τ₁ τ₂
6460

6561
⊆-disjoint-union-cospan : {xs ys zs : List A} {τ₁ : xs ⊆ zs} {τ₂ : ys ⊆ zs}
6662
Disjoint τ₁ τ₂ Cospan τ₁ τ₂
67-
⊆-disjoint-union-cospan d = record
68-
{ upperBound = ⊆-disjoint-union d
69-
; isCospan = ⊆-disjoint-union-is-cospan d
70-
}
63+
⊆-disjoint-union-cospan {τ₁ = τ₁} {τ₂ = τ₂} _ = ⊆-upper-bound-cospan τ₁ τ₂
64+
65+
{-# WARNING_ON_USAGE ⊆-disjoint-union-is-cospan
66+
"Warning: ⊆-disjoint-union-is-cospan was deprecated in v2.1.
67+
Please use `⊆-upper-bound-is-cospan` from `Data.List.Relation.Binary.Sublist.Propositional.Slice` instead."
68+
#-}
69+
70+
{-# WARNING_ON_USAGE ⊆-disjoint-union-cospan
71+
"Warning: ⊆-disjoint-union-cospan was deprecated in v2.1.
72+
Please use `⊆-upper-bound-cospan` from `Data.List.Relation.Binary.Sublist.Propositional.Slice` instead."
73+
#-}
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,79 @@
1+
------------------------------------------------------------------------
2+
-- The Agda standard library
3+
--
4+
-- Slices in the propositional sublist category.
5+
------------------------------------------------------------------------
6+
7+
{-# OPTIONS --cubical-compatible --safe #-}
8+
9+
module Data.List.Relation.Binary.Sublist.Propositional.Slice
10+
{a} {A : Set a} where
11+
12+
open import Data.List.Base using (List)
13+
open import Data.List.Relation.Binary.Sublist.Propositional
14+
open import Relation.Binary.PropositionalEquality
15+
16+
------------------------------------------------------------------------
17+
-- A Union where the triangles commute is a
18+
-- Cospan in the slice category (_ ⊆ zs).
19+
20+
record IsCospan {xs ys zs : List A} {τ₁ : xs ⊆ zs} {τ₂ : ys ⊆ zs} (u : UpperBound τ₁ τ₂) : Set a where
21+
field
22+
tri₁ : ⊆-trans (UpperBound.inj₁ u) (UpperBound.sub u) ≡ τ₁
23+
tri₂ : ⊆-trans (UpperBound.inj₂ u) (UpperBound.sub u) ≡ τ₂
24+
25+
record Cospan {xs ys zs : List A} (τ₁ : xs ⊆ zs) (τ₂ : ys ⊆ zs) : Set a where
26+
field
27+
upperBound : UpperBound τ₁ τ₂
28+
isCospan : IsCospan upperBound
29+
30+
open UpperBound upperBound public
31+
open IsCospan isCospan public
32+
33+
open IsCospan
34+
open Cospan
35+
36+
module _
37+
{x : A} {xs ys zs : List A} {τ₁ : xs ⊆ zs} {τ₂ : ys ⊆ zs}
38+
{u : UpperBound τ₁ τ₂} (c : IsCospan u) where
39+
open UpperBound u
40+
open IsCospan c
41+
42+
∷ₙ-cospan : IsCospan (∷ₙ-ub u)
43+
∷ₙ-cospan = record
44+
{ tri₁ = cong (x ∷ʳ_) (c .tri₁)
45+
; tri₂ = cong (x ∷ʳ_) (c .tri₂)
46+
}
47+
48+
∷ₗ-cospan : IsCospan (refl {x = x} ∷ₗ-ub u)
49+
∷ₗ-cospan = record
50+
{ tri₁ = cong (refl ∷_) (c .tri₁)
51+
; tri₂ = cong (x ∷ʳ_) (c .tri₂)
52+
}
53+
54+
∷ᵣ-cospan : IsCospan (refl {x = x} ∷ᵣ-ub u)
55+
∷ᵣ-cospan = record
56+
{ tri₁ = cong (x ∷ʳ_) (c .tri₁)
57+
; tri₂ = cong (refl ∷_) (c .tri₂)
58+
}
59+
60+
∷-cospan : IsCospan (refl {x = x} , refl {x = x} ∷-ub u)
61+
∷-cospan = record
62+
{ tri₁ = cong (refl ∷_) (c .tri₁)
63+
; tri₂ = cong (refl ∷_) (c .tri₂)
64+
}
65+
66+
⊆-upper-bound-is-cospan : {xs ys zs : List A} (τ₁ : xs ⊆ zs) (τ₂ : ys ⊆ zs)
67+
IsCospan (⊆-upper-bound τ₁ τ₂)
68+
⊆-upper-bound-is-cospan [] [] = record { tri₁ = refl ; tri₂ = refl }
69+
⊆-upper-bound-is-cospan (z ∷ʳ τ₁) (.z ∷ʳ τ₂) = ∷ₙ-cospan (⊆-upper-bound-is-cospan τ₁ τ₂)
70+
⊆-upper-bound-is-cospan (z ∷ʳ τ₁) (refl ∷ τ₂) = ∷ᵣ-cospan (⊆-upper-bound-is-cospan τ₁ τ₂)
71+
⊆-upper-bound-is-cospan (refl ∷ τ₁) (z ∷ʳ τ₂) = ∷ₗ-cospan (⊆-upper-bound-is-cospan τ₁ τ₂)
72+
⊆-upper-bound-is-cospan (refl ∷ τ₁) (refl ∷ τ₂) = ∷-cospan (⊆-upper-bound-is-cospan τ₁ τ₂)
73+
74+
⊆-upper-bound-cospan : {xs ys zs : List A} (τ₁ : xs ⊆ zs) (τ₂ : ys ⊆ zs)
75+
Cospan τ₁ τ₂
76+
⊆-upper-bound-cospan τ₁ τ₂ = record
77+
{ upperBound = ⊆-upper-bound τ₁ τ₂
78+
; isCospan = ⊆-upper-bound-is-cospan τ₁ τ₂
79+
}

src/Data/List/Relation/Binary/Sublist/Setoid.agda

+31-17
Original file line numberDiff line numberDiff line change
@@ -162,7 +162,7 @@ record RawPushout {xs ys zs : List A} (τ : xs ⊆ ys) (σ : xs ⊆ zs) : Set (c
162162
leg₁ : ys ⊆ upperBound
163163
leg₂ : zs ⊆ upperBound
164164

165-
open RawPushout
165+
open RawPushout using (leg₁; leg₂)
166166

167167
------------------------------------------------------------------------
168168
-- Extending corners of a raw pushout square
@@ -211,13 +211,25 @@ z ∷ʳ₂ rpo = record
211211

212212
⊆-joinˡ : {xs ys zs : List A}
213213
: xs ⊆ ys) (σ : xs ⊆ zs) λ us xs ⊆ us
214-
⊆-joinˡ τ σ = upperBound rpo , ⊆-trans τ (leg₁ rpo)
214+
⊆-joinˡ τ σ = RawPushout.upperBound rpo , ⊆-trans τ (leg₁ rpo)
215215
where
216216
rpo = ⊆-pushoutˡ τ σ
217217

218218

219219
------------------------------------------------------------------------
220220
-- Upper bound of two sublists xs,ys ⊆ zs
221+
--
222+
-- Two sublists τ : xs ⊆ zs and σ : ys ⊆ zs
223+
-- can be joined in a unique way if τ and σ are respected.
224+
--
225+
-- For instance, if τ : [x] ⊆ [x,y,x] and σ : [y] ⊆ [x,y,x]
226+
-- then the union will be [x,y] or [y,x], depending on whether
227+
-- τ picks the first x or the second one.
228+
--
229+
-- NB: If the content of τ and σ were ignored then the union would not
230+
-- be unique. Expressing uniqueness would require a notion of equality
231+
-- of sublist proofs, which we do not (yet) have for the setoid case
232+
-- (however, for the propositional case).
221233

222234
record UpperBound {xs ys zs} (τ : xs ⊆ zs) (σ : ys ⊆ zs) : Set (c ⊔ ℓ) where
223235
field
@@ -254,24 +266,26 @@ x≈y ∷ᵣ-ub u = record
254266
; inj₂ = x≈y ∷ u .inj₂
255267
}
256268

269+
_,_∷-ub_ : {xs ys zs} {τ : xs ⊆ zs} {σ : ys ⊆ zs} {x y z}
270+
(x≈z : x ≈ z) (y≈z : y ≈ z) UpperBound τ σ UpperBound (x≈z ∷ τ) (y≈z ∷ σ)
271+
x≈z , y≈z ∷-ub u = record
272+
{ sub = refl ∷ u .sub
273+
; inj₁ = x≈z ∷ u .inj₁
274+
; inj₂ = y≈z ∷ u .inj₂
275+
}
276+
277+
⊆-upper-bound : {xs ys zs} (τ : xs ⊆ zs) (σ : ys ⊆ zs) UpperBound τ σ
278+
⊆-upper-bound [] [] = record { sub = [] ; inj₁ = [] ; inj₂ = [] }
279+
⊆-upper-bound (y ∷ʳ τ) (.y ∷ʳ σ) = ∷ₙ-ub (⊆-upper-bound τ σ)
280+
⊆-upper-bound (y ∷ʳ τ) (x≈y ∷ σ) = x≈y ∷ᵣ-ub ⊆-upper-bound τ σ
281+
⊆-upper-bound (x≈y ∷ τ) (y ∷ʳ σ) = x≈y ∷ₗ-ub ⊆-upper-bound τ σ
282+
⊆-upper-bound (x≈z ∷ τ) (y≈z ∷ σ) = x≈z , y≈z ∷-ub ⊆-upper-bound τ σ
283+
257284
------------------------------------------------------------------------
258285
-- Disjoint union
259286
--
260-
-- Two non-overlapping sublists τ : xs ⊆ zs and σ : ys ⊆ zs
261-
-- can be joined in a unique way if τ and σ are respected.
262-
--
263-
-- For instance, if τ : [x] ⊆ [x,y,x] and σ : [y] ⊆ [x,y,x]
264-
-- then the union will be [x,y] or [y,x], depending on whether
265-
-- τ picks the first x or the second one.
266-
--
267-
-- NB: If the content of τ and σ were ignored then the union would not
268-
-- be unique. Expressing uniqueness would require a notion of equality
269-
-- of sublist proofs, which we do not (yet) have for the setoid case
270-
-- (however, for the propositional case).
287+
-- Upper bound of two non-overlapping sublists.
271288

272289
⊆-disjoint-union : {xs ys zs} {τ : xs ⊆ zs} {σ : ys ⊆ zs}
273290
Disjoint τ σ UpperBound τ σ
274-
⊆-disjoint-union [] = record { sub = [] ; inj₁ = [] ; inj₂ = [] }
275-
⊆-disjoint-union (x ∷ₙ d) = ∷ₙ-ub (⊆-disjoint-union d)
276-
⊆-disjoint-union (x≈y ∷ₗ d) = x≈y ∷ₗ-ub (⊆-disjoint-union d)
277-
⊆-disjoint-union (x≈y ∷ᵣ d) = x≈y ∷ᵣ-ub (⊆-disjoint-union d)
291+
⊆-disjoint-union {τ = τ} {σ = σ} _ = ⊆-upper-bound τ σ

standard-library.agda-lib

+2-1
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,5 @@
1-
name: standard-library-2.1
1+
name: standard-library-tbt
22
include: src
33
flags:
44
--warning=noUnsupportedIndexedMatch
5+
-- --type-based-termination

0 commit comments

Comments
 (0)