@@ -130,6 +130,16 @@ commutativeSemigroup G H = record
130
130
}
131
131
} where module G = CommutativeSemigroup G; module H = CommutativeSemigroup H
132
132
133
+ unitalMagma : UnitalMagma a ℓ₁ → UnitalMagma b ℓ₂ → UnitalMagma (a ⊔ b) (ℓ₁ ⊔ ℓ₂)
134
+ unitalMagma M N = record
135
+ { ε = M.ε , N.ε
136
+ ; isUnitalMagma = record
137
+ { isMagma = Magma.isMagma (magma M.magma N.magma)
138
+ ; identity = (M.identityˡ , N.identityˡ <*>_)
139
+ , (M.identityʳ , N.identityʳ <*>_)
140
+ }
141
+ } where module M = UnitalMagma M; module N = UnitalMagma N
142
+
133
143
monoid : Monoid a ℓ₁ → Monoid b ℓ₂ → Monoid (a ⊔ b) (ℓ₁ ⊔ ℓ₂)
134
144
monoid M N = record
135
145
{ ε = M.ε , N.ε
@@ -163,6 +173,27 @@ idempotentCommutativeMonoid M N = record
163
173
module M = IdempotentCommutativeMonoid M
164
174
module N = IdempotentCommutativeMonoid N
165
175
176
+ invertibleMagma : InvertibleMagma a ℓ₁ → InvertibleMagma b ℓ₂ → InvertibleMagma (a ⊔ b) (ℓ₁ ⊔ ℓ₂)
177
+ invertibleMagma M N = record
178
+ { _⁻¹ = map M._⁻¹ N._⁻¹
179
+ ; isInvertibleMagma = record
180
+ { isMagma = Magma.isMagma (magma M.magma N.magma)
181
+ ; inverse = (λ x → (M.inverseˡ , N.inverseˡ) <*> x)
182
+ , (λ x → (M.inverseʳ , N.inverseʳ) <*> x)
183
+ ; ⁻¹-cong = map M.⁻¹-cong N.⁻¹-cong
184
+ }
185
+ } where module M = InvertibleMagma M; module N = InvertibleMagma N
186
+
187
+ invertibleUnitalMagma : InvertibleUnitalMagma a ℓ₁ → InvertibleUnitalMagma b ℓ₂ → InvertibleUnitalMagma (a ⊔ b) (ℓ₁ ⊔ ℓ₂)
188
+ invertibleUnitalMagma M N = record
189
+ { ε = M.ε , N.ε
190
+ ; isInvertibleUnitalMagma = record
191
+ { isInvertibleMagma = InvertibleMagma.isInvertibleMagma (invertibleMagma M.invertibleMagma N.invertibleMagma)
192
+ ; identity = (M.identityˡ , N.identityˡ <*>_)
193
+ , (M.identityʳ , N.identityʳ <*>_)
194
+ }
195
+ } where module M = InvertibleUnitalMagma M; module N = InvertibleUnitalMagma N
196
+
166
197
group : Group a ℓ₁ → Group b ℓ₂ → Group (a ⊔ b) (ℓ₁ ⊔ ℓ₂)
167
198
group G H = record
168
199
{ _⁻¹ = map G._⁻¹ H._⁻¹
@@ -225,6 +256,14 @@ commutativeSemiring R S = record
225
256
}
226
257
} where module R = CommutativeSemiring R; module S = CommutativeSemiring S
227
258
259
+ kleeneAlgebra : KleeneAlgebra a ℓ₁ → KleeneAlgebra b ℓ₂ → KleeneAlgebra (a ⊔ b) (ℓ₁ ⊔ ℓ₂)
260
+ kleeneAlgebra K L = record
261
+ { isKleeneAlgebra = record
262
+ { isSemiring = Semiring.isSemiring (semiring K.semiring L.semiring)
263
+ ; +-idem = λ x → (K.+-idem , L.+-idem) <*> x
264
+ }
265
+ } where module K = KleeneAlgebra K; module L = KleeneAlgebra L
266
+
228
267
ring : Ring a ℓ₁ → Ring b ℓ₂ → Ring (a ⊔ b) (ℓ₁ ⊔ ℓ₂)
229
268
ring R S = record
230
269
{ -_ = uncurry (λ x y → R.-_ x , S.-_ y)
@@ -252,37 +291,6 @@ commutativeRing R S = record
252
291
}
253
292
} where module R = CommutativeRing R; module S = CommutativeRing S
254
293
255
- unitalMagma : UnitalMagma a ℓ₁ → UnitalMagma b ℓ₂ → UnitalMagma (a ⊔ b) (ℓ₁ ⊔ ℓ₂)
256
- unitalMagma M N = record
257
- { ε = M.ε , N.ε
258
- ; isUnitalMagma = record
259
- { isMagma = Magma.isMagma (magma M.magma N.magma)
260
- ; identity = (M.identityˡ , N.identityˡ <*>_)
261
- , (M.identityʳ , N.identityʳ <*>_)
262
- }
263
- } where module M = UnitalMagma M; module N = UnitalMagma N
264
-
265
- invertibleMagma : InvertibleMagma a ℓ₁ → InvertibleMagma b ℓ₂ → InvertibleMagma (a ⊔ b) (ℓ₁ ⊔ ℓ₂)
266
- invertibleMagma M N = record
267
- { _⁻¹ = map M._⁻¹ N._⁻¹
268
- ; isInvertibleMagma = record
269
- { isMagma = Magma.isMagma (magma M.magma N.magma)
270
- ; inverse = (λ x → (M.inverseˡ , N.inverseˡ) <*> x)
271
- , (λ x → (M.inverseʳ , N.inverseʳ) <*> x)
272
- ; ⁻¹-cong = map M.⁻¹-cong N.⁻¹-cong
273
- }
274
- } where module M = InvertibleMagma M; module N = InvertibleMagma N
275
-
276
- invertibleUnitalMagma : InvertibleUnitalMagma a ℓ₁ → InvertibleUnitalMagma b ℓ₂ → InvertibleUnitalMagma (a ⊔ b) (ℓ₁ ⊔ ℓ₂)
277
- invertibleUnitalMagma M N = record
278
- { ε = M.ε , N.ε
279
- ; isInvertibleUnitalMagma = record
280
- { isInvertibleMagma = InvertibleMagma.isInvertibleMagma (invertibleMagma M.invertibleMagma N.invertibleMagma)
281
- ; identity = (M.identityˡ , N.identityˡ <*>_)
282
- , (M.identityʳ , N.identityʳ <*>_)
283
- }
284
- } where module M = InvertibleUnitalMagma M; module N = InvertibleUnitalMagma N
285
-
286
294
quasigroup : Quasigroup a ℓ₁ → Quasigroup b ℓ₂ → Quasigroup (a ⊔ b) (ℓ₁ ⊔ ℓ₂)
287
295
quasigroup M N = record
288
296
{ _\\_ = zip M._\\_ N._\\_
0 commit comments