|
| 1 | +------------------------------------------------------------------------ |
| 2 | +-- The Agda standard library |
| 3 | +-- |
| 4 | +-- Consequences of a monomorphism between bisemimodules |
| 5 | +------------------------------------------------------------------------ |
| 6 | + |
| 7 | +{-# OPTIONS --safe --cubical-compatible #-} |
| 8 | + |
| 9 | +open import Algebra.Module.Bundles.Raw |
| 10 | +open import Algebra.Module.Morphism.Structures |
| 11 | + |
| 12 | +module Algebra.Module.Morphism.BisemimoduleMonomorphism |
| 13 | + {r s a b ℓ₁ ℓ₂} {R : Set r} {S : Set s} {M : RawBisemimodule R S a ℓ₁} {N : RawBisemimodule R S b ℓ₂} {⟦_⟧} |
| 14 | + (isBisemimoduleMonomorphism : IsBisemimoduleMonomorphism M N ⟦_⟧) |
| 15 | + where |
| 16 | + |
| 17 | +open IsBisemimoduleMonomorphism isBisemimoduleMonomorphism |
| 18 | +private |
| 19 | + module M = RawBisemimodule M |
| 20 | + module N = RawBisemimodule N |
| 21 | + |
| 22 | +open import Algebra.Bundles |
| 23 | +open import Algebra.Core |
| 24 | +import Algebra.Module.Definitions.Bi as BiDefs |
| 25 | +import Algebra.Module.Definitions.Left as LeftDefs |
| 26 | +import Algebra.Module.Definitions.Right as RightDefs |
| 27 | +open import Algebra.Module.Structures |
| 28 | +open import Algebra.Structures |
| 29 | +open import Function.Base |
| 30 | +open import Relation.Binary.Core |
| 31 | +import Relation.Binary.Reasoning.Setoid as SetoidReasoning |
| 32 | + |
| 33 | +------------------------------------------------------------------------ |
| 34 | +-- Re-exports |
| 35 | + |
| 36 | +open import Algebra.Morphism.MonoidMonomorphism |
| 37 | + +ᴹ-isMonoidMonomorphism public |
| 38 | + using () |
| 39 | + renaming |
| 40 | + ( cong to +ᴹ-cong |
| 41 | + ; assoc to +ᴹ-assoc |
| 42 | + ; comm to +ᴹ-comm |
| 43 | + ; identityˡ to +ᴹ-identityˡ |
| 44 | + ; identityʳ to +ᴹ-identityʳ |
| 45 | + ; identity to +ᴹ-identity |
| 46 | + ; isMagma to +ᴹ-isMagma |
| 47 | + ; isSemigroup to +ᴹ-isSemigroup |
| 48 | + ; isMonoid to +ᴹ-isMonoid |
| 49 | + ; isCommutativeMonoid to +ᴹ-isCommutativeMonoid |
| 50 | + ) |
| 51 | + |
| 52 | +open import Algebra.Module.Morphism.LeftSemimoduleMonomorphism |
| 53 | + isLeftSemimoduleMonomorphism public |
| 54 | + using |
| 55 | + ( *ₗ-cong |
| 56 | + ; *ₗ-zeroˡ |
| 57 | + ; *ₗ-distribʳ |
| 58 | + ; *ₗ-identityˡ |
| 59 | + ; *ₗ-assoc |
| 60 | + ; *ₗ-zeroʳ |
| 61 | + ; *ₗ-distribˡ |
| 62 | + ; isLeftSemimodule |
| 63 | + ) |
| 64 | + |
| 65 | +open import Algebra.Module.Morphism.RightSemimoduleMonomorphism |
| 66 | + isRightSemimoduleMonomorphism public |
| 67 | + using |
| 68 | + ( *ᵣ-cong |
| 69 | + ; *ᵣ-zeroʳ |
| 70 | + ; *ᵣ-distribˡ |
| 71 | + ; *ᵣ-identityʳ |
| 72 | + ; *ᵣ-assoc |
| 73 | + ; *ᵣ-zeroˡ |
| 74 | + ; *ᵣ-distribʳ |
| 75 | + ; isRightSemimodule |
| 76 | + ) |
| 77 | + |
| 78 | +------------------------------------------------------------------------ |
| 79 | +-- Properties |
| 80 | + |
| 81 | +module _ (+ᴹ-isMagma : IsMagma N._≈ᴹ_ N._+ᴹ_) where |
| 82 | + |
| 83 | + open IsMagma +ᴹ-isMagma |
| 84 | + using (setoid) |
| 85 | + renaming (∙-cong to +ᴹ-cong) |
| 86 | + open SetoidReasoning setoid |
| 87 | + |
| 88 | + private |
| 89 | + module MDefs = BiDefs R S M._≈ᴹ_ |
| 90 | + module NDefs = BiDefs R S N._≈ᴹ_ |
| 91 | + module LDefs = LeftDefs R N._≈ᴹ_ |
| 92 | + module RDefs = RightDefs S N._≈ᴹ_ |
| 93 | + |
| 94 | + *ₗ-*ᵣ-assoc |
| 95 | + : LDefs.LeftCongruent N._*ₗ_ → RDefs.RightCongruent N._*ᵣ_ |
| 96 | + → NDefs.Associative N._*ₗ_ N._*ᵣ_ |
| 97 | + → MDefs.Associative M._*ₗ_ M._*ᵣ_ |
| 98 | + *ₗ-*ᵣ-assoc *ₗ-congˡ *ᵣ-congʳ *ₗ-*ᵣ-assoc x m y = injective $ begin |
| 99 | + ⟦ (x M.*ₗ m) M.*ᵣ y ⟧ ≈⟨ *ᵣ-homo y (x M.*ₗ m) ⟩ |
| 100 | + ⟦ x M.*ₗ m ⟧ N.*ᵣ y ≈⟨ *ᵣ-congʳ (*ₗ-homo x m) ⟩ |
| 101 | + (x N.*ₗ ⟦ m ⟧) N.*ᵣ y ≈⟨ *ₗ-*ᵣ-assoc x ⟦ m ⟧ y ⟩ |
| 102 | + x N.*ₗ (⟦ m ⟧ N.*ᵣ y) ≈˘⟨ *ₗ-congˡ (*ᵣ-homo y m) ⟩ |
| 103 | + x N.*ₗ ⟦ m M.*ᵣ y ⟧ ≈˘⟨ *ₗ-homo x (m M.*ᵣ y) ⟩ |
| 104 | + ⟦ x M.*ₗ (m M.*ᵣ y) ⟧ ∎ |
| 105 | + |
| 106 | +------------------------------------------------------------------------ |
| 107 | +-- Structures |
| 108 | + |
| 109 | +module _ |
| 110 | + {ℓr} {_≈r_ : Rel R ℓr} {_+r_ _*r_ 0r 1r} |
| 111 | + {ℓs} {_≈s_ : Rel S ℓs} {_+s_ _*s_ 0s 1s} |
| 112 | + (R-isSemiring : IsSemiring _≈r_ _+r_ _*r_ 0r 1r) |
| 113 | + (S-isSemiring : IsSemiring _≈s_ _+s_ _*s_ 0s 1s) |
| 114 | + where |
| 115 | + |
| 116 | + private |
| 117 | + R-semiring : Semiring _ _ |
| 118 | + R-semiring = record { isSemiring = R-isSemiring } |
| 119 | + |
| 120 | + S-semiring : Semiring _ _ |
| 121 | + S-semiring = record { isSemiring = S-isSemiring } |
| 122 | + |
| 123 | + isBisemimodule |
| 124 | + : IsBisemimodule R-semiring S-semiring N._≈ᴹ_ N._+ᴹ_ N.0ᴹ N._*ₗ_ N._*ᵣ_ |
| 125 | + → IsBisemimodule R-semiring S-semiring M._≈ᴹ_ M._+ᴹ_ M.0ᴹ M._*ₗ_ M._*ᵣ_ |
| 126 | + isBisemimodule isBisemimodule = record |
| 127 | + { +ᴹ-isCommutativeMonoid = +ᴹ-isCommutativeMonoid NN.+ᴹ-isCommutativeMonoid |
| 128 | + ; isPreleftSemimodule = record |
| 129 | + { *ₗ-cong = *ₗ-cong NN.+ᴹ-isMagma NN.*ₗ-cong |
| 130 | + ; *ₗ-zeroˡ = *ₗ-zeroˡ NN.+ᴹ-isMagma NN.*ₗ-zeroˡ |
| 131 | + ; *ₗ-distribʳ = *ₗ-distribʳ NN.+ᴹ-isMagma NN.*ₗ-distribʳ |
| 132 | + ; *ₗ-identityˡ = *ₗ-identityˡ NN.+ᴹ-isMagma NN.*ₗ-identityˡ |
| 133 | + ; *ₗ-assoc = *ₗ-assoc NN.+ᴹ-isMagma NN.*ₗ-congˡ NN.*ₗ-assoc |
| 134 | + ; *ₗ-zeroʳ = *ₗ-zeroʳ NN.+ᴹ-isMagma NN.*ₗ-congˡ NN.*ₗ-zeroʳ |
| 135 | + ; *ₗ-distribˡ = *ₗ-distribˡ NN.+ᴹ-isMagma NN.*ₗ-congˡ NN.*ₗ-distribˡ |
| 136 | + } |
| 137 | + ; isPrerightSemimodule = record |
| 138 | + { *ᵣ-cong = *ᵣ-cong NN.+ᴹ-isMagma NN.*ᵣ-cong |
| 139 | + ; *ᵣ-zeroʳ = *ᵣ-zeroʳ NN.+ᴹ-isMagma NN.*ᵣ-zeroʳ |
| 140 | + ; *ᵣ-distribˡ = *ᵣ-distribˡ NN.+ᴹ-isMagma NN.*ᵣ-distribˡ |
| 141 | + ; *ᵣ-identityʳ = *ᵣ-identityʳ NN.+ᴹ-isMagma NN.*ᵣ-identityʳ |
| 142 | + ; *ᵣ-assoc = *ᵣ-assoc NN.+ᴹ-isMagma NN.*ᵣ-congʳ NN.*ᵣ-assoc |
| 143 | + ; *ᵣ-zeroˡ = *ᵣ-zeroˡ NN.+ᴹ-isMagma NN.*ᵣ-congʳ NN.*ᵣ-zeroˡ |
| 144 | + ; *ᵣ-distribʳ = *ᵣ-distribʳ NN.+ᴹ-isMagma NN.*ᵣ-congʳ NN.*ᵣ-distribʳ |
| 145 | + } |
| 146 | + ; *ₗ-*ᵣ-assoc = *ₗ-*ᵣ-assoc NN.+ᴹ-isMagma NN.*ₗ-congˡ NN.*ᵣ-congʳ NN.*ₗ-*ᵣ-assoc |
| 147 | + } |
| 148 | + where |
| 149 | + module NN = IsBisemimodule isBisemimodule |
0 commit comments