|
| 1 | +module Haskell.Law.Ord.Integer where |
| 2 | + |
| 3 | +open import Haskell.Prim |
| 4 | +open import Haskell.Prim.Bool |
| 5 | +open import Haskell.Prim.Eq |
| 6 | +open import Haskell.Prim.Ord |
| 7 | + |
| 8 | +open import Haskell.Law.Bool |
| 9 | +open import Haskell.Law.Eq |
| 10 | +open import Haskell.Law.Equality |
| 11 | +open import Haskell.Law.Integer |
| 12 | +open import Haskell.Law.Ord.Def |
| 13 | +open import Haskell.Law.Ord.Nat |
| 14 | +open import Haskell.Law.Nat |
| 15 | + |
| 16 | +instance |
| 17 | + iLawfulOrdInteger : IsLawfulOrd Integer |
| 18 | + |
| 19 | + iLawfulOrdInteger .comparability (pos n) (pos m) = comparability n m |
| 20 | + iLawfulOrdInteger .comparability (pos n) (negsuc m) = refl |
| 21 | + iLawfulOrdInteger .comparability (negsuc n) (pos m) = refl |
| 22 | + iLawfulOrdInteger .comparability (negsuc n) (negsuc m) |
| 23 | + rewrite sym $ lte2gte m n |
| 24 | + | sym $ lte2gte n m |
| 25 | + = comparability m n |
| 26 | + |
| 27 | + iLawfulOrdInteger .transitivity (pos n) (pos m) (pos o) h₁ = transitivity n m o h₁ |
| 28 | + iLawfulOrdInteger .transitivity (pos n) (pos m) (negsuc o) h₁ |
| 29 | + rewrite &&-sym (n <= m) False |
| 30 | + = h₁ |
| 31 | + iLawfulOrdInteger .transitivity (negsuc n) y (pos o) h₁ = refl |
| 32 | + iLawfulOrdInteger .transitivity (negsuc n) (negsuc m) (negsuc o) h₁ |
| 33 | + rewrite eqSymmetry n o |
| 34 | + = transitivity o m n (trans (reverseLte o m m n) h₁) |
| 35 | + |
| 36 | + iLawfulOrdInteger .reflexivity (pos n) = reflexivity n |
| 37 | + iLawfulOrdInteger .reflexivity (negsuc n) = reflexivity n |
| 38 | + |
| 39 | + iLawfulOrdInteger .antisymmetry (pos n) (pos m) h₁ = antisymmetry n m h₁ |
| 40 | + iLawfulOrdInteger .antisymmetry (negsuc n) (negsuc m) h₁ = antisymmetry n m |
| 41 | + $ trans (reverseLte n m m n) h₁ |
| 42 | + |
| 43 | + iLawfulOrdInteger .lte2gte (pos n) (pos m) |
| 44 | + rewrite eqSymmetry n m |
| 45 | + = refl |
| 46 | + iLawfulOrdInteger .lte2gte (pos n) (negsuc m) = refl |
| 47 | + iLawfulOrdInteger .lte2gte (negsuc n) (pos m) = refl |
| 48 | + iLawfulOrdInteger .lte2gte (negsuc n) (negsuc m) |
| 49 | + rewrite eqSymmetry n m |
| 50 | + = refl |
| 51 | + |
| 52 | + iLawfulOrdInteger .lt2LteNeq (pos n) (pos m) = lt2LteNeq n m |
| 53 | + iLawfulOrdInteger .lt2LteNeq (pos n) (negsuc m) = refl |
| 54 | + iLawfulOrdInteger .lt2LteNeq (negsuc n) (pos m) = refl |
| 55 | + iLawfulOrdInteger .lt2LteNeq (negsuc n) (negsuc m) |
| 56 | + rewrite eqSymmetry n m |
| 57 | + = lt2LteNeq m n |
| 58 | + |
| 59 | + iLawfulOrdInteger .lt2gt x y = refl |
| 60 | + |
| 61 | + iLawfulOrdInteger .compareLt (pos n) (pos m) = compareLt n m |
| 62 | + iLawfulOrdInteger .compareLt (pos n) (negsuc m) = refl |
| 63 | + iLawfulOrdInteger .compareLt (negsuc n) (pos m) = refl |
| 64 | + iLawfulOrdInteger .compareLt (negsuc n) (negsuc m) |
| 65 | + rewrite eqSymmetry n m |
| 66 | + = compareLt m n |
| 67 | + |
| 68 | + iLawfulOrdInteger .compareGt (pos n) (pos m) = compareGt n m |
| 69 | + iLawfulOrdInteger .compareGt (pos n) (negsuc m) = refl |
| 70 | + iLawfulOrdInteger .compareGt (negsuc n) (pos m) = refl |
| 71 | + iLawfulOrdInteger .compareGt (negsuc n) (negsuc m) |
| 72 | + rewrite eqSymmetry n m |
| 73 | + = compareGt m n |
| 74 | + |
| 75 | + iLawfulOrdInteger .compareEq (pos n) (pos m) = compareEq n m |
| 76 | + iLawfulOrdInteger .compareEq (pos n) (negsuc m) = refl |
| 77 | + iLawfulOrdInteger .compareEq (negsuc n) (pos m) = refl |
| 78 | + iLawfulOrdInteger .compareEq (negsuc n) (negsuc m) |
| 79 | + rewrite eqSymmetry n m |
| 80 | + = compareEq m n |
| 81 | + |
| 82 | + iLawfulOrdInteger .min2if (pos n) (pos m) |
| 83 | + rewrite lte2ngt n m |
| 84 | + | sym $ ifFlip (m < n) (pos m) (pos n) |
| 85 | + = eqReflexivity (min (pos n) (pos m)) |
| 86 | + iLawfulOrdInteger .min2if (pos n) (negsuc m) = eqReflexivity m |
| 87 | + iLawfulOrdInteger .min2if (negsuc n) (pos m) = eqReflexivity n |
| 88 | + iLawfulOrdInteger .min2if (negsuc n) (negsuc m) |
| 89 | + rewrite gte2nlt n m |
| 90 | + | sym $ ifFlip (n < m) (negsuc m) (negsuc n) |
| 91 | + = eqReflexivity (min (negsuc n) (negsuc m)) |
| 92 | + |
| 93 | + iLawfulOrdInteger .max2if (pos n) (pos m) |
| 94 | + rewrite gte2nlt n m |
| 95 | + | sym (ifFlip (n < m) (pos m) (pos n)) |
| 96 | + = eqReflexivity (max (pos n) (pos m)) |
| 97 | + iLawfulOrdInteger .max2if (pos n) (negsuc m) = eqReflexivity n |
| 98 | + iLawfulOrdInteger .max2if (negsuc n) (pos m) = eqReflexivity m |
| 99 | + iLawfulOrdInteger .max2if (negsuc n) (negsuc m) |
| 100 | + rewrite lte2ngt n m |
| 101 | + | sym $ ifFlip (m < n) (negsuc m) (negsuc n) |
| 102 | + = eqReflexivity (max (negsuc n) (negsuc m)) |
0 commit comments