forked from NOAA-EMC/wgrib2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcproj.c
444 lines (402 loc) · 11.7 KB
/
cproj.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
/*******************************************************************************
NAME Projection support routines listed below.
PURPOSE: The following functions are included in CPROJ.C.
SINCOS: Calculates the sine and cosine.
ASINZ: Eliminates roundoff errors.
MSFNZ: Computes the constant small m for Oblique Equal Area.
QSFNZ: Computes the constant small q for Oblique Equal Area.
PHI1Z: Computes phi1 for Albers Conical Equal-Area.
PHI2Z: Computes the latitude angle, phi2, for Lambert
Conformal Conic and Polar Stereographic.
PHI3Z: Computes the latitude, phi3, for Equidistant Conic.
PHI4Z: Computes the latitude, phi4, for Polyconic.
PAKCZ: Converts a 2 digit alternate packed DMS format to
standard packed DMS format.
PAKR2DM: Converts radians to 3 digit packed DMS format.
TSFNZ: Computes the small t for Lambert Conformal Conic and
Polar Stereographic.
SIGN: Returns the sign of an argument.
ADJUST_LON: Adjusts a longitude angle to range -180 to 180.
E0FN, E1FN, E2FN, E3FN:
Computes the constants e0,e1,e2,and e3 for
calculating the distance along a meridian.
E4FN: Computes e4 used for Polar Stereographic.
MLFN: Computes M, the distance along a meridian.
CALC_UTM_ZONE: Calculates the UTM zone number.
PROGRAMMER DATE REASON
---------- ---- ------
D. Steinwand, EROS July, 1991 Initial development
T. Mittan, EROS May, 1993 Modified from Fortran GCTP for C GCTP
S. Nelson, EROS June, 1993 Added inline comments
S. Nelson, EROS Nov, 1993 Added loop counter in ADJUST_LON
S. Nelson, EROS Jan, 1998 Changed misspelled error message
*******************************************************************************/
#include "cproj.h"
#define MAX_VAL 4
#define MAXLONG 2147483647.
#define DBLLONG 4.61168601e18
/* Function to calculate the sine and cosine in one call. Some computer
systems have implemented this function, resulting in a faster implementation
than calling each function separately. It is provided here for those
computer systems which don`t implement this function
----------------------------------------------------*/
void sincos(val, sin_val, cos_val)
double val;
double *sin_val;
double *cos_val;
{
*sin_val = sin(val);
*cos_val = cos(val);
return;
}
/* Function to eliminate roundoff errors in asin
----------------------------------------------*/
double asinz (con)
double con;
{
if (fabs(con) > 1.0)
{
if (con > 1.0)
con = 1.0;
else
con = -1.0;
}
return(asin(con));
}
/* Function to compute the constant small m which is the radius of
a parallel of latitude, phi, divided by the semimajor axis.
---------------------------------------------------------------*/
double msfnz (eccent,sinphi,cosphi)
double eccent;
double sinphi;
double cosphi;
{
double con;
con = eccent * sinphi;
return((cosphi / (sqrt (1.0 - con * con))));
}
/* Function to compute constant small q which is the radius of a
parallel of latitude, phi, divided by the semimajor axis.
------------------------------------------------------------*/
double qsfnz (eccent,sinphi,cosphi)
double eccent;
double sinphi;
double cosphi;
{
double con;
if (eccent > 1.0e-7)
{
con = eccent * sinphi;
return (( 1.0- eccent * eccent) * (sinphi /(1.0 - con * con) - (.5/eccent)*
log((1.0 - con)/(1.0 + con))));
}
else
return(2.0 * sinphi);
}
/* Function to compute phi1, the latitude for the inverse of the
Albers Conical Equal-Area projection.
-------------------------------------------*/
double phi1z (eccent,qs,flag)
double eccent; /* Eccentricity angle in radians */
double qs; /* Angle in radians */
long *flag; /* Error flag number */
{
double eccnts;
double dphi;
double con;
double com;
double sinpi;
double cospi;
double phi;
long i;
phi = asinz(.5 * qs);
if (eccent < EPSLN)
return(phi);
eccnts = eccent * eccent;
for (i = 1; i <= 25; i++)
{
sincos(phi,&sinpi,&cospi);
con = eccent * sinpi;
com = 1.0 - con * con;
dphi = .5 * com * com / cospi * (qs / (1.0 - eccnts) - sinpi / com +
.5 / eccent * log ((1.0 - con) / (1.0 + con)));
phi = phi + dphi;
if (fabs(dphi) <= 1e-7)
return(phi);
}
p_error ("Convergence error","phi1z-conv");
*flag = 001;
return(ERROR);
}
/* Function to compute the latitude angle, phi2, for the inverse of the
Lambert Conformal Conic and Polar Stereographic projections.
----------------------------------------------------------------*/
double phi2z(eccent,ts,flag)
double eccent; /* Spheroid eccentricity */
double ts; /* Constant value t */
long *flag; /* Error flag number */
{
double eccnth;
double phi;
double con;
double dphi;
double sinpi;
long i;
*flag = 0;
eccnth = .5 * eccent;
phi = HALF_PI - 2 * atan(ts);
for (i = 0; i <= 15; i++)
{
sinpi = sin(phi);
con = eccent * sinpi;
dphi = HALF_PI - 2 * atan(ts *(pow(((1.0 - con)/(1.0 + con)),eccnth))) -
phi;
phi += dphi;
if (fabs(dphi) <= .0000000001)
return(phi);
}
p_error ("Convergence error","phi2z-conv");
*flag = 002;
return(002);
}
/* Function to compute latitude, phi3, for the inverse of the Equidistant
Conic projection.
-----------------------------------------------------------------*/
double phi3z(ml,e0,e1,e2,e3,flag)
double ml; /* Constant */
double e0; /* Constant */
double e1; /* Constant */
double e2; /* Constant */
double e3; /* Constant */
long *flag; /* Error flag number */
{
double phi;
double dphi;
long i;
phi = ml;
for (i = 0; i < 15; i++)
{
dphi = (ml + e1 * sin(2.0 * phi) - e2 * sin(4.0 * phi) + e3 * sin(6.0 * phi))
/ e0 - phi;
phi += dphi;
if (fabs(dphi) <= .0000000001)
{
*flag = 0;
return(phi);
}
}
p_error("Latitude failed to converge after 15 iterations","PHI3Z-CONV");
*flag = 3;
return(3);
}
/* Function to compute, phi4, the latitude for the inverse of the
Polyconic projection.
------------------------------------------------------------*/
double phi4z (eccent,e0,e1,e2,e3,a,b,c,phi)
double eccent; /* Spheroid eccentricity squared */
double e0;
double e1;
double e2;
double e3;
double a;
double b;
double *c;
double *phi;
{
double sinphi;
double sin2ph;
double tanphi;
double ml;
double mlp;
double con1;
double con2;
double con3;
double dphi;
long i;
*phi = a;
for (i = 1; i <= 15; i++)
{
sinphi = sin(*phi);
tanphi = tan(*phi);
*c = tanphi * sqrt (1.0 - eccent * sinphi * sinphi);
sin2ph = sin (2.0 * *phi);
/*
ml = e0 * *phi - e1 * sin2ph + e2 * sin (4.0 * *phi);
mlp = e0 - 2.0 * e1 * cos (2.0 * *phi) + 4.0 * e2 *
cos (4.0 * *phi);
*/
ml = e0 * *phi - e1 * sin2ph + e2 * sin (4.0 * *phi) - e3 *
sin (6.0 * *phi);
mlp = e0 - 2.0 * e1 * cos (2.0 * *phi) + 4.0 * e2 *
cos (4.0 * *phi) - 6.0 * e3 * cos (6.0 * *phi);
con1 = 2.0 * ml + *c * (ml * ml + b) - 2.0 * a * (*c * ml + 1.0);
con2 = eccent * sin2ph * (ml * ml + b - 2.0 * a * ml) / (2.0 * *c);
con3 = 2.0 * (a - ml) * (*c * mlp - 2.0 / sin2ph) - 2.0 * mlp;
dphi = con1 / (con2 + con3);
*phi += dphi;
if (fabs(dphi) <= .0000000001 )
return(OK);
}
p_error("Latitude failed to converge","phi4z-conv");
return(004);
}
/* Function to convert 2 digit alternate packed DMS format (+/-)DDDMMSS.SSS
to 3 digit standard packed DMS format (+/-)DDDMMMSSS.SSS.
-----------------------------------------------------------------*/
double pakcz(pak)
double pak; /* Angle in alternate packed DMS format */
{
double con;
double secs;
long degs,mins;
char sgna;
sgna = ' ';
if (pak < 0.0)
sgna = '-';
con = fabs (pak);
degs = (long) ((con / 10000.0) + .001);
con = con - degs * 10000;
mins = (long) ((con / 100.0) + .001);
secs = con - mins * 100;
con = (double) (degs) * 1000000.0 + (double) (mins) * 1000.0 + secs;
if (sgna == '-')
con = - con;
return(con);
}
/* Function to convert radians to 3 digit packed DMS format (+/-)DDDMMMSSS.SSS
----------------------------------------------------------------------------*/
double pakr2dm(pak)
double pak; /* Angle in radians */
{
double con;
double secs;
long degs,mins;
char sgna;
sgna = ' ';
pak *= R2D;
if (pak < 0.0)
sgna = '-';
con = fabs (pak);
degs = (long) (con);
con = (con - degs) * 60;
mins = (long) con;
secs = (con - mins) * 60;
con = (double) (degs) * 1000000.0 + (double) (mins) * 1000.0 + secs;
if (sgna == '-')
con = - con;
return(con);
}
/* Function to compute the constant small t for use in the forward
computations in the Lambert Conformal Conic and the Polar
Stereographic projections.
--------------------------------------------------------------*/
double tsfnz(eccent,phi,sinphi)
double eccent; /* Eccentricity of the spheroid */
double phi; /* Latitude phi */
double sinphi; /* Sine of the latitude */
{
double con;
double com;
con = eccent * sinphi;
com = .5 * eccent;
con = pow(((1.0 - con) / (1.0 + con)),com);
return (tan(.5 * (HALF_PI - phi))/con);
}
/* Function to return the sign of an argument
------------------------------------------*/
int gctpc_sign(double x) {
if (x < 0.0)
return(-1);
else
return(1);
}
/* Function to adjust a longitude angle to range from -180 to 180 radians
added if statments
-----------------------------------------------------------------------*/
double adjust_lon(x)
double x; /* Angle in radians */
{
long temp;
long count = 0;
for(;;)
{
if (fabs(x)<=PI)
break;
else
if (((long) fabs(x / PI)) < 2)
x = x-(sign(x) *TWO_PI);
else
if (((long) fabs(x / TWO_PI)) < MAXLONG)
{
x = x-(((long)(x / TWO_PI))*TWO_PI);
}
else
if (((long) fabs(x / (MAXLONG * TWO_PI))) < MAXLONG)
{
x = x-(((long)(x / (MAXLONG * TWO_PI))) * (TWO_PI * MAXLONG));
}
else
if (((long) fabs(x / (DBLLONG * TWO_PI))) < MAXLONG)
{
x = x-(((long)(x / (DBLLONG * TWO_PI))) * (TWO_PI * DBLLONG));
}
else
x = x-(sign(x) *TWO_PI);
count++;
if (count > MAX_VAL)
break;
}
return(x);
}
/* Functions to compute the constants e0, e1, e2, and e3 which are used
in a series for calculating the distance along a meridian. The
input x represents the eccentricity squared.
----------------------------------------------------------------*/
double e0fn(x)
double x;
{
return(1.0-0.25*x*(1.0+x/16.0*(3.0+1.25*x)));
}
double e1fn(x)
double x;
{
return(0.375*x*(1.0+0.25*x*(1.0+0.46875*x)));
}
double e2fn(x)
double x;
{
return(0.05859375*x*x*(1.0+0.75*x));
}
double e3fn(x)
double x;
{
return(x*x*x*(35.0/3072.0));
}
/* Function to compute the constant e4 from the input of the eccentricity
of the spheroid, x. This constant is used in the Polar Stereographic
projection.
--------------------------------------------------------------------*/
double e4fn(x)
double x;
{
double con;
double com;
con = 1.0 + x;
com = 1.0 - x;
return (sqrt((pow(con,con))*(pow(com,com))));
}
/* Function computes the value of M which is the distance along a meridian
from the Equator to latitude phi.
------------------------------------------------*/
double mlfn(e0,e1,e2,e3,phi)
double e0,e1,e2,e3,phi;
{
return(e0*phi-e1*sin(2.0*phi)+e2*sin(4.0*phi)-e3*sin(6.0*phi));
}
/* Function to calculate UTM zone number--NOTE Longitude entered in DEGREES!!!
---------------------------------------------------------------------------*/
long calc_utm_zone(lon)
double lon;
{
return((long)(((lon + 180.0) / 6.0) + 1.0));
}