-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.p5.js
877 lines (729 loc) · 29.2 KB
/
main.p5.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
let sketch = function(p) {
class Node {
nodeOrigin
destinations = new Map()
type
angle
redTriangles = new Set()
blueTriangles = new Set()
constructor(origin, destination) {
this.nodeOrigin = origin
this.destinations.set(getId(destination), destination)
}
}
const goldenRatio = (1 + Math.sqrt(5)) / 2
const SLIDER_RESOLUTION = 30
const SUBDIVISION_THRESHOLD = 7
let subdivisions = 4
let canvasSize
let canvas
let triangles = []
let nodeMap = new Map()
let inputImage
let short = 0
let long = 0
// Controls
let shadeA, shadeB, shadeC, shadeAlabel, shadeBlabel, shadeClabel, subdivControl, shadeOffset, colourSelect
let drawLines, debug, manualControl, recalcButton, deformButton, animateButton, exportCheck
let doExport = false
let phi1slider, phi2slider, phi4slider, phi5slider, phi6slider, phi7slider
let p1, p2, p4, p5, p6, p7
let palettes = [
{ "name": "Outrun", "palette": { "a": "#D90368", "b": "#2E294E", "lines": "#2E294E" } },
{ "name": "Autumn", "palette": { "a": "#780116", "b": "#DB7C26", "lines": "#780116" } },
{ "name": "Purple", "palette": { "a": "#552846", "b": "#bd4089", "lines": "#552846" } },
{ "name": "Earthy", "palette": { "a": "#bf6d46", "b": "#f1ab86", "lines": "#bf6d46" } },
{ "name": "Sky", "palette": { "a": "#445398", "b": "#92aae3", "lines": "#445398" } },
{ "name": "Green", "palette": { "a": "#4e5c15", "b": "#AEC772", "lines": "#4e5c15" } },
{ "name": "Grey", "palette": { "a": "#141414", "b": "#444444", "lines": "#0a0a0a" } },
{ "name": "Officer", "palette": { "a": "#EC994B", "b": "#15133C", "lines": "#15133C" } },
]
let palette = palettes[3]
// Create an ID based on the coordinates of the point - same coordinates will give consistent ID
// Used to prevent duplicate points in node Map and destination Set
function getId(point) {
return point.re*(1000)+point.im
}
// Build the nodes array. Each node will have an origin point, plus a list of the destinations
// Later, we will also calculate the node type, and which direction we should deform it in
function incrementNode(nodeOrigin, nodeDest) {
node = nodeMap.get(getId(nodeOrigin))
if(!node)
nodeMap.set(getId(nodeOrigin), new Node(nodeOrigin, nodeDest))
else
node.destinations.set(getId(nodeDest), nodeDest)
}
// Keep references to the associated triangles for use determining node type later
function addTriangle(vert, triangle) {
node = nodeMap.get(getId(vert))
if(triangle.type == 0)
node.redTriangles.add(triangle)
else
node.blueTriangles.add(triangle)
}
// For a given triangle, we add each edge vertex to the node list (A->B gets added, but so does B->A, etc)
function addTriangleNodes(triangle) {
incrementNode(triangle.vertA, triangle.vertB)
incrementNode(triangle.vertA, triangle.vertC)
incrementNode(triangle.vertB, triangle.vertA)
incrementNode(triangle.vertB, triangle.vertC)
incrementNode(triangle.vertC, triangle.vertA)
incrementNode(triangle.vertC, triangle.vertB)
addTriangle(triangle.vertA, triangle)
addTriangle(triangle.vertB, triangle)
addTriangle(triangle.vertC, triangle)
}
// Very useful for readability during debugging
function approx(node, decimals = 5) {
if(typeof node == "number")
return Math.round(node * Math.pow(10, decimals)) / Math.pow(10, decimals)
node.re = Math.round(node.re * Math.pow(10, decimals)) / Math.pow(10, decimals)
node.im = Math.round(node.im * Math.pow(10, decimals)) / Math.pow(10, decimals)
return node
}
function subdivide(triangles) {
let result = []
for(let triangle of triangles) {
if(triangle.type == 0) {
// Calculate new verticies
let P = approx(math.add(triangle.vertA, math.divide(math.subtract(triangle.vertB, triangle.vertA), goldenRatio)))
let triangle1 = { type: 0, vertA: triangle.vertC, vertB: P, vertC: triangle.vertB }
let triangle2 = { type: 1, vertA: P, vertB: triangle.vertC, vertC: triangle.vertA }
result.push(triangle1, triangle2)
} else {
// Calculate new verticies
let Q = approx(math.add(triangle.vertB, math.divide(math.subtract(triangle.vertA, triangle.vertB), goldenRatio)))
let R = approx(math.add(triangle.vertB, math.divide(math.subtract(triangle.vertC, triangle.vertB), goldenRatio)))
let triangle1 = { type: 1, vertA: R, vertB: triangle.vertC, vertC: triangle.vertA }
let triangle2 = { type: 1, vertA: Q, vertB: R, vertC: triangle.vertB }
let triangle3 = { type: 0, vertA: R, vertB: Q, vertC: triangle.vertA }
result.push(triangle1, triangle2, triangle3)
}
}
return result
}
// Finds any common nodes between two triangles. Used when determining node type
function commonNodes(triangle1, triangle2) {
let foundNodes = []
if(vertMatches(triangle1.vertA, triangle2.vertA) | vertMatches(triangle1.vertA, triangle2.vertB) | vertMatches(triangle1.vertA, triangle2.vertC))
foundNodes.push(triangle1.vertA)
if(vertMatches(triangle1.vertB, triangle2.vertA) | vertMatches(triangle1.vertB, triangle2.vertB) | vertMatches(triangle1.vertB, triangle2.vertC))
foundNodes.push(triangle1.vertB)
if(vertMatches(triangle1.vertC, triangle2.vertA) | vertMatches(triangle1.vertC, triangle2.vertB) | vertMatches(triangle1.vertC, triangle2.vertC))
foundNodes.push(triangle1.vertC)
return foundNodes
}
// Helper function to check when two nodes are equivelant
function vertMatches(vert1, vert2) {
return (vert1.re == vert2.re && vert1.im == vert2.im)
}
// https://stackoverflow.com/questions/3115982/how-to-check-if-two-arrays-are-equal-with-javascript
function arraysEqual(a, b) {
if (a === b) return true
if (a == null || b == null) return false
if (a.length != b.length) return false
// If you don't care about the order of the elements inside
// the array, you should sort both arrays here.
// Please note that calling sort on an array will modify that array.
// you might want to clone your array first.
for (var i = 0; i < a.length; ++i) {
if (a[i] !== b[i]) return false
}
return true
}
function initPenrose(numRecurse) {
triangles = []
nodeMap = new Map()
short = 0
long = 0
// Create wheel of red triangles around the origin
for(let i of Array(10).keys()) {
let B = 0
let C = 0
if(i%2) {
B = approx(math.Complex.fromPolar(1, (2*i - 1) * Math.PI / 10))
C = approx(math.Complex.fromPolar(1, (2*i + 1) * Math.PI / 10))
} else {
C = approx(math.Complex.fromPolar(1, (2*i - 1) * Math.PI / 10))
B = approx(math.Complex.fromPolar(1, (2*i + 1) * Math.PI / 10))
}
let triangle = { type: 0, vertA: math.complex(0,0), vertB: B, vertC: C }
triangles.push(triangle)
}
//Perform subdivisions
Array.from(Array(numRecurse)).forEach(() => {
triangles = subdivide(triangles)
})
triangles.forEach(triangle => {
// Find a unique list of nodes
addTriangleNodes(triangle)
// Set the original values of the nodes (before deformation)
triangle.original = {}
triangle.original.vertA = triangle.vertA.clone()
triangle.original.vertB = triangle.vertB.clone()
triangle.original.vertC = triangle.vertC.clone()
})
// Determine which node type each node is
nodeMap.forEach(node => {
redTriangles = [...node.redTriangles]
node.numRed = redTriangles.length
blueTriangles = [...node.blueTriangles]
node.numBlue = blueTriangles.length
if(node.numRed == 4 && node.numBlue == 2) {
node.type = 1
} else if(node.numRed == 2 && node.numBlue == 6) {
node.type = 2
} else if(node.numRed == 0 && node.numBlue == 10) {
node.type = 3
} else if(node.numRed == 2 && node.numBlue == 2) {
node.type = 4
} else if(node.numRed == 2 && node.numBlue == 4) {
node.type = 5
} else if(node.numRed == 4 && node.numBlue == 6) {
node.type = 6
} else if(node.numRed == 2 && node.numBlue == 8) {
node.type = 7
} else {
// Unknown cluster type - possibly on the edge of the diagram
}
// Figure out the angle of the deformation.
// The angle points in a direction which, when applying a positive value for deformation, will darken the overall image
let angleNode
let nextBigOne, lastAngle, distHist, i
switch(node.type) {
case 1:
// angleNode is the node which we use to calculate what angle the cluster is at.
// For type 1, this is the node between the two blue triangles
angleNode = commonNodes(blueTriangles[0], blueTriangles[1]).filter(n => {
return (!((n.re == node.nodeOrigin.re) && (n.im == node.nodeOrigin.im)))
})[0]
// If we don't have this, then it's possibly a vertex at the edge of the diagram
if(!angleNode)
node.type = 0
else
node.angle = angleNode.sub(node.nodeOrigin).arg()
break
case 2:
case 4:
case 7:
// angleNode is the node which we use to calculate what angle the cluster is at.
// For types 2, 4 and 7, this is the opposite node between the two red triangles
angleNode = commonNodes(redTriangles[0], redTriangles[1]).filter(n => {
return (!((n.re == node.nodeOrigin.re) && (n.im == node.nodeOrigin.im)))
})[0]
// If we don't have this, then it's possibly a vertex at the edge of the diagram
if(!angleNode)
node.type = 0
else
node.angle = angleNode.sub(node.nodeOrigin).arg()+Math.PI
break
case 5:
// For 5 we have to resort to measuring angles between nodeOrigin and the destination nodes
// angleNode is the node shared between the two blue triangles with the greatest angle (ie. fat side)
// If we go around the destinations CW or CCW , measuring the angles, we will have a small angle (pi/5 ~= 0.63),
// then a big one (3pi/5 ~= 1.89). The destination corresponding to the first big one after a small one is the angleNode.
// Sort destinations by angle
sortedDests = [...node.destinations.values()].sort((a,b) => (a.sub(node.nodeOrigin).arg() > b.sub(node.nodeOrigin).arg() ? 1 : -1))
nextBigOne = false
lastAngle = sortedDests[5].sub(node.nodeOrigin).arg() - 2*Math.PI
for(let dest of sortedDests) {
let angle = dest.sub(node.nodeOrigin).arg()
let delta = angle - lastAngle
if(nextBigOne && delta > 1) {
node.angle = angle
break
} else if(delta.toFixed(2) == "0.63") {
nextBigOne = true
}
lastAngle = angle
}
// If we get to the end without a small->large transition, it must have been the first dest node
if(typeof node.angle === "undefined")
node.angle = sortedDests[0].sub(node.nodeOrigin).arg()
break
case 6:
// For 6 we take a similar approach, but this time instead of measuring angle delta, we measure distance
// angleNode will be the node at the end of the sequence, short short long short short short long SHORT <- this one
// Sort destinations by angle
sortedDests = [...node.destinations.values()].sort((a,b) => (a.sub(node.nodeOrigin).arg() > b.sub(node.nodeOrigin).arg() ? 1 : -1))
distHist = []
i = 0
while(typeof node.angle === "undefined") {
let dest = sortedDests[i++]
let dist = approx(dest.sub(node.nodeOrigin).abs(), 3) // round value to account for calculation errors
distHist.push(dist)
if(dist > long)
long = dist
if(dist > short && dist < long)
short = dist
if(distHist.length < 8)
continue
let last8 = distHist.slice(Math.max(distHist.length - 8, 1))
if(arraysEqual(last8, [short, short, long, short, short, short, long, short])) {
node.angle = dest.sub(node.nodeOrigin).arg()
break
}
// nodes at the edge of the image can't be computed
if(distHist.length == 18) {
node.angle = 0
break
}
// We must have hit the end, loop around and try again
if(i == node.destinations.size)
i = 0
}
// If we get to the end without a small->large transition, it must have been the first dest node
if(typeof node.angle === "undefined")
node.angle = sortedDests[0].sub(node.nodeOrigin).arg()
break
case 3:
case 8:
default:
// N/A
break
}
})
}
function deformNode(node, phi) {
node.phi = phi
if(node.angle) {
let nodeTriangles = [...node.redTriangles, ...node.blueTriangles]
// Perform deformation on all matching nodes
nodeTriangles.forEach(triangle => {
if(vertMatches(triangle.original.vertA, node.nodeOrigin)) {
triangle.vertA = triangle.original.vertA.add(math.Complex.fromPolar(phi, node.angle))
} else if(vertMatches(triangle.original.vertB, node.nodeOrigin)) {
triangle.vertB = triangle.original.vertB.add(math.Complex.fromPolar(phi, node.angle))
} else if(vertMatches(triangle.original.vertC, node.nodeOrigin)) {
triangle.vertC = triangle.original.vertC.add(math.Complex.fromPolar(phi, node.angle))
}
})
}
}
function manualDeform(p1, p2, p4, p5, p6, p7) {
nodeMap.forEach(node => {
let phi = 0
if(node.type == 1)
phi = p1
else if(node.type == 2)
phi = p2
else if(node.type == 4)
phi = p4
else if(node.type == 5)
phi = p5
else if(node.type == 6)
phi = p6
else if(node.type == 7)
phi = p7
deformNode(node, phi)
})
}
let t = 0
// helper for writing color to array
function writePixelValue(image, x, y, c) {
let index = (x + y * image.width) * 4
image.pixels[index] = c
image.pixels[index + 1] = c
image.pixels[index + 2] = c
image.pixels[index + 3] = 255
}
function deformTriangles(inputImage) {
// Calculate noise field
let noiseField = p.createImage(canvasSize/10, canvasSize/10)
noiseField.loadPixels()
let SPEED = 10
let CLOUD_SIZE = 30
for (let x = 0; x < noiseField.width; x++) {
for (let y = 0; y < noiseField.height; y++) {
let c = 192 * p.noise(x/CLOUD_SIZE + t/SPEED, y/CLOUD_SIZE - t/SPEED) + 64
let alpha = 0.0
if(t < 1000) {
alpha = Math.min(t/20, 1.0)
} else if(t < 1020) {
alpha = 1.0 - (t-1000)/20
} else {
alpha = 0.0
t = 0
doExport = false
}
writePixelValue(noiseField, x, y, p.int(c * alpha))
}
}
noiseField.updatePixels()
noiseField.resize(canvasSize, canvasSize)
t+=1
// Blend noise field with input image
let blendedImage = p.createImage(canvasSize, canvasSize)
blendedImage.copy(noiseField, 0, 0, canvasSize, canvasSize, 0, 0, canvasSize, canvasSize)
blendedImage.blend(inputImage, 0, 0, canvasSize, canvasSize, 0, 0, canvasSize, canvasSize, p.DARKEST)
blendedImage.loadPixels()
nodeMap.forEach(node => {
// How much do we shift this node type?
let phi = 0
let x = p.int(canvasSize*(node.nodeOrigin.re + 1)/2)
let y = p.int(canvasSize*(node.nodeOrigin.im + 1)/2)
let nodeBrightness = getPixelVal(blendedImage, x, y)
/* This is where the actual greyscale to deformation mapping happens
* Each node type can be deformed within a range, but a pre-determined
* full-black/full-white preset is used to set the range.
* These presets are scaled by the "short" length of the penrose tile which
* was calculated during the node type sorting, to allow for different size tiles.
* Full-white => t4/t5 = 1, others unchanged
* Full-black => t4/t5 = -2/3, others unchanged
*/
switch(node.type) {
case 4: phi = p.map(nodeBrightness, 0, 255, -2/3, 1)
break
case 5: phi = p.map(nodeBrightness, 0, 255, -2/3, 1)
break
}
phi *= short
deformNode(node, phi)
})
}
function getPixelVal(image, x, y) {
return image.pixels[4 * (y * image.width + x)]
}
function drawIfFast() {
if(subdivisions <= SUBDIVISION_THRESHOLD)
p.draw()
}
// Function to recalculate the level of detail
function recalc(img) {
if(img && img.width) {
inputImage = img
}
inputImage.filter(p.GRAY)
inputImage.loadPixels()
subdivisions = p.int(subdivControl.value())
if(subdivisions <= SUBDIVISION_THRESHOLD) {
deformButton.attribute("disabled", "")
} else {
deformButton.removeAttribute("disabled")
}
const t0 = performance.now();
initPenrose(subdivisions)
const t1 = performance.now();
recalcButton.attribute("disabled", "")
p.draw()
const t2 = performance.now();
if(debug.checked()) {
console.log(`Init took ${t1 - t0} milliseconds.`);
console.log(`Draw took ${t2 - t1} milliseconds.`);
}
}
function setPalette() {
palette = { "name": "Custom", "palette": { "a": shadeA.color() , "b": shadeB.color(), "lines": shadeC.color() } }
p.draw()
}
function pickPalette(e) {
let selectedPalette = palettes.filter(a=>{return a.name==e.target.value})[0];
if(!selectedPalette) { return }
palette = selectedPalette
// colorpickers don't appear to have a method to set the value, so we have to recreate :(
shadeA.remove()
shadeB.remove()
shadeC.remove()
shadeAlabel.remove()
shadeBlabel.remove()
shadeClabel.remove()
drawLines.remove()
setupColours(shadeOffset)
p.draw()
}
function enableButton() {
recalcButton.removeAttribute("disabled")
}
function imageLoaded(img) {
inputImage = img
recalc()
}
function imageChanged(e) {
p.loadImage(e.target.value, imageLoaded)
}
// Pads a number with 0s and returns the string, 25 => 0025
function zeroPad(number) {
if (number<=9999) { number = ("000"+number).slice(-4); }
return number;
}
let frame = 0
let running = false
// Export the current frame
function exportFrame() {
filename = `${palette.name}_lod${subdivisions}_${zeroPad(frame)}`
p.saveCanvas(canvas, filename, 'png')
}
// Display the loaded image, and optionally export it (download)
function showFrame(img) {
imageLoaded(img)
if(exportCheck.checked())
exportFrame()
if(running)
animate()
}
// Load the next frame
function animate() {
p.loadImage(`breathe/${zeroPad(frame)}.png`, showFrame)
frame = (frame + 1) % 200
}
function animateOrStop() {
if(running) {
animateButton.html("Animate")
running = false
} else {
running = true
animateButton.html("Stop")
animate(0)
}
}
function randomise() {
// Randomise sliders
phi1slider.value(p.random(0, SLIDER_RESOLUTION))
phi2slider.value(p.random(0, SLIDER_RESOLUTION))
phi4slider.value(p.random(0, SLIDER_RESOLUTION))
phi5slider.value(p.random(0, SLIDER_RESOLUTION))
phi6slider.value(p.random(0, SLIDER_RESOLUTION))
// phi7slider.value(p.random(0, SLIDER_RESOLUTION))
// Randomise palette
let selectedPalette = palettes[Math.floor(Math.random()*palettes.length)]
palette = selectedPalette
colourSelect.value(selectedPalette.name)
// Randomise subdivisions
subdivControl.value(p.random(3, 5))
recalc()
}
function exportAnimation() {
t = 0
doExport = true
}
function toggleManual() {
let enabled = manualControl.checked()
if(enabled) {
phi1slider.removeAttribute("disabled")
phi2slider.removeAttribute("disabled")
phi4slider.removeAttribute("disabled")
phi5slider.removeAttribute("disabled")
phi6slider.removeAttribute("disabled")
phi7slider.removeAttribute("disabled")
} else {
phi1slider.attribute("disabled", "")
phi2slider.attribute("disabled", "")
phi4slider.attribute("disabled", "")
phi5slider.attribute("disabled", "")
phi6slider.attribute("disabled", "")
phi7slider.attribute("disabled", "")
}
p.draw()
}
function setupColours(y) {
shadeOffset = y
shadeA = p.createColorPicker(palette.palette.a)
shadeA.input(setPalette)
shadeA.position(canvasSize + 20, y+=30)
shadeAlabel = p.createSpan("Fill")
shadeAlabel.position(canvasSize + 100, y+5)
shadeB = p.createColorPicker(palette.palette.b)
shadeB.input(setPalette)
shadeB.position(canvasSize + 20, y+=30)
shadeBlabel = p.createSpan("Background")
shadeBlabel.position(canvasSize + 100, y+5)
shadeC = p.createColorPicker(palette.palette.lines)
shadeC.input(setPalette)
shadeC.position(canvasSize + 20, y+=30)
shadeClabel = p.createSpan("Lines")
shadeClabel.position(canvasSize + 100, y+5)
drawLines = p.createCheckbox("Draw lines", true)
drawLines.changed(p.draw)
drawLines.position(canvasSize + 100, y+=30)
return y
}
p.preload = function() {
inputImage = p.loadImage("empty.png")
}
p.setup = function() {
if(inputImage.width > inputImage.height)
canvasSize = inputImage.width
else
canvasSize = inputImage.height
canvas = p.createCanvas(canvasSize, canvasSize)
let y = 20
manualControl = p.createCheckbox("Manual Control", false)
manualControl.changed(toggleManual)
manualControl.position(canvasSize + 20, y)
phi1slider = p.createSlider(0, SLIDER_RESOLUTION, SLIDER_RESOLUTION/2)
phi2slider = p.createSlider(0, SLIDER_RESOLUTION, SLIDER_RESOLUTION/2)
phi4slider = p.createSlider(0, SLIDER_RESOLUTION, SLIDER_RESOLUTION/2)
phi5slider = p.createSlider(0, SLIDER_RESOLUTION, SLIDER_RESOLUTION/2)
phi6slider = p.createSlider(0, SLIDER_RESOLUTION, SLIDER_RESOLUTION/2)
phi7slider = p.createSlider(0, SLIDER_RESOLUTION, SLIDER_RESOLUTION/2)
phi1slider.position(canvasSize + 20, y+=30)
phi2slider.position(canvasSize + 20, y+=30)
phi4slider.position(canvasSize + 20, y+=30)
phi5slider.position(canvasSize + 20, y+=30)
phi6slider.position(canvasSize + 20, y+=30)
phi7slider.position(canvasSize + 20, y+=30)
phi1slider.attribute("disabled", "")
phi2slider.attribute("disabled", "")
phi4slider.attribute("disabled", "")
phi5slider.attribute("disabled", "")
phi6slider.attribute("disabled", "")
phi7slider.attribute("disabled", "")
phi1slider.changed(drawIfFast)
phi2slider.changed(drawIfFast)
phi4slider.changed(drawIfFast)
phi5slider.changed(drawIfFast)
phi6slider.changed(drawIfFast)
phi7slider.changed(drawIfFast)
deformButton = p.createButton("Deform")
deformButton.position(canvasSize + 20, y+=30)
deformButton.mousePressed(p.draw)
debug = p.createCheckbox("Debug", false)
debug.changed(p.draw)
debug.position(canvasSize + 110, y)
animateButton = p.createButton("Animate")
animateButton.position(canvasSize + 20, y+=30)
animateButton.mousePressed(animateOrStop)
exportCheck = p.createCheckbox("Export animation", false)
exportCheck.changed(exportAnimation)
exportCheck.position(canvasSize + 110, y)
exportButton = p.createButton("Export")
exportButton.position(canvasSize + 20, y+=30)
exportButton.mousePressed(exportFrame)
randomiseButton = p.createButton("Randomise")
randomiseButton.position(canvasSize + 110, y)
randomiseButton.mousePressed(randomise)
let detailLabel = p.createSpan("Level of detail")
detailLabel.position(canvasSize + 20, y+=80)
subdivControl = p.createSlider(3, 8, subdivisions)
subdivControl.position(canvasSize + 20, y+=30)
subdivControl.changed(enableButton)
recalcButton = p.createButton("Recalculate")
recalcButton.attribute("disabled", "")
recalcButton.position(canvasSize + 60, y+=30)
recalcButton.mousePressed(recalc)
let imageLabel = p.createSpan("Reference Image")
imageLabel.position(canvasSize + 20, y+=50)
let sel = p.createSelect()
sel.position(canvasSize + 20, y+=20)
sel.option("empty.png")
sel.option("ring.png")
sel.option("dgen.png")
sel.option("lineargrad.png")
sel.option("skull.png")
sel.option("snake.png")
sel.option("bucwah.png")
sel.changed(imageChanged)
let colourLabel = p.createSpan("Color Preset")
colourLabel.position(canvasSize + 20, y+=50)
colourSelect = p.createSelect()
colourSelect.position(canvasSize + 20, y+=20)
palettes.forEach(palette => {
colourSelect.option(palette.name)
})
colourSelect.changed(pickPalette)
y = setupColours(y)
subdivisions = p.int(subdivControl.value())
if(subdivisions <= SUBDIVISION_THRESHOLD) {
deformButton.attribute("disabled", "")
} else {
deformButton.removeAttribute("disabled")
}
inputImage.filter(p.GRAY)
inputImage.loadPixels()
initPenrose(subdivisions)
p.frameRate(15)
}
p.draw = function() {
if(manualControl.checked()) {
p1 = p.map(phi1slider.value(), 0, SLIDER_RESOLUTION, -short, short)
p2 = p.map(phi2slider.value(), 0, SLIDER_RESOLUTION, -short, short)
p4 = p.map(phi4slider.value(), 0, SLIDER_RESOLUTION, -short, short)
p5 = p.map(phi5slider.value(), 0, SLIDER_RESOLUTION, -short, short)
p6 = p.map(phi6slider.value(), 0, SLIDER_RESOLUTION, -short, short)
p7 = p.map(phi7slider.value(), 0, SLIDER_RESOLUTION, -short, short)
// Clamp to avoid weirdness - this is a bit of a hack, but it gives a nice result
// In case of a conflict, give p4 and p5 priority (ie. adjust the others to fit)
p4 = Math.min(short*Math.sin(Math.PI/10)*2, p4)
p5 = Math.min(short*Math.sin(Math.PI/10)*2, p5)
p4 = Math.max(-short*Math.sin(Math.PI/10), p4) // This should be -short*2sin(pi/10), but scaling ALL the way creates a fully dark image, which looks crap
p6 = Math.min(short-p5, p6)
p1 = Math.max(-short-p7, p1)
p1 = Math.max((-0.9*short*Math.sin(Math.PI/10)*2-p4)/Math.sin(3*Math.PI/5), p1)
p1 = Math.max(-short + 3*Math.sin(Math.PI/10)*Math.abs(p6), p1)
p2 = Math.max(-short*Math.sin(Math.PI/10)*2-p4, p2)
p2 = Math.min((short-p4)/2, p2)
p7 = Math.min((short-p5)*0.5, p7)
p7 = Math.max((-short+p5)*0.5, p7)
manualDeform(p1, p2, p4, p5, p6, p7)
} else {
deformTriangles(inputImage)
}
p.background(palette.palette.lines)
p.strokeWeight(drawLines.checked() ? 2 : 0)
p.stroke(palette.palette.lines)
for (let triangle of triangles) {
if(triangle.type == 0) {
p.fill(palette.palette.a)
} else {
p.fill(palette.palette.b)
}
p.beginShape()
p.vertex(canvasSize*(triangle.vertA.re + 1)/2, canvasSize*(triangle.vertA.im + 1)/2)
p.vertex(canvasSize*(triangle.vertB.re + 1)/2, canvasSize*(triangle.vertB.im + 1)/2)
p.vertex(canvasSize*(triangle.vertC.re + 1)/2, canvasSize*(triangle.vertC.im + 1)/2)
p.vertex(canvasSize*(triangle.vertA.re + 1)/2, canvasSize*(triangle.vertA.im + 1)/2)
p.endShape()
}
p.stroke(palette.palette.lines)
p.fill("#000")
if(manualControl.checked()) {
let y = 35
p.text("t1 " + p1.toFixed(3), canvasSize - 50, y+=30)
p.text("t2 " + p2.toFixed(3), canvasSize - 50, y+=30)
p.text("t4 " + p4.toFixed(3), canvasSize - 50, y+=30)
p.text("t5 " + p5.toFixed(3), canvasSize - 50, y+=30)
p.text("t6 " + p6.toFixed(3), canvasSize - 50, y+=30)
p.text("t7 " + p7.toFixed(3), canvasSize - 50, y+=30)
}
if(debug.checked()) {
p.text("Nodes: " + nodeMap.size, 0, 15)
p.text("Triangles: " + triangles.length, 0, 30)
p.text("Short: " + short, 0, 45)
p.text("Long: " + long, 0, 60)
nodeMap.forEach(node => {
if(node.angle) {
// Green line showing deformation
p.stroke("#0f0")
p.beginShape()
let newVert = node.nodeOrigin.add(math.Complex.fromPolar(node.phi, node.angle))
p.vertex(canvasSize*(node.nodeOrigin.re + 1)/2, canvasSize*(node.nodeOrigin.im + 1)/2)
p.vertex(canvasSize*(newVert.re + 1)/2, canvasSize*(newVert.im + 1)/2)
p.endShape()
}
// Red dot at origin
p.stroke("#f00")
p.strokeWeight(5)
p.point(canvasSize*(node.nodeOrigin.re + 1)/2, canvasSize*(node.nodeOrigin.im + 1)/2)
p.strokeWeight(1)
// Label nodes which can be deformed
if(node.type && node.type != 3) {
p.stroke(shadeC.color())
p.fill("#000")
p.text(`t${node.type}`, (node.nodeOrigin.re+1)*canvasSize/2, (node.nodeOrigin.im+1)*canvasSize/2)
}
})
} else {
// Circle crop
canvas.drawingContext.globalCompositeOperation = 'destination-in'
canvas.drawingContext.beginPath()
canvas.drawingContext.arc(canvas.width/2, canvas.height/2, 0.45*canvas.height, 0, Math.PI*2)
canvas.drawingContext.closePath()
canvas.drawingContext.fill()
canvas.drawingContext.globalCompositeOperation = 'source-over'
}
if(doExport) {
p.saveCanvas(canvas, `penrose_${t.toString().padStart(4, "0")}`, "png")
}
}
}
new p5(sketch, "penrose")