-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprojet_pyspark.py
339 lines (241 loc) · 10.6 KB
/
projet_pyspark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
#%%
from pyspark import SparkContext
from pyspark.sql import SparkSession
from pyspark.sql.functions import broadcast, udf, expr
from pyspark.sql.types import FloatType, StructType, StructField, StringType
from pyspark.sql.dataframe import DataFrame
from FlightRadar24.api import FlightRadar24API
sc = SparkContext.getOrCreate()
spark = SparkSession(sc)
#%%
def get_and_write_flights() -> DataFrame:
"""Get flights from FlightRadar24 and write them to the file"""
def get_file_name() -> str:
"""Generate file name for the current date and time"""
from datetime import datetime
now = datetime.now()
year = now.year
month = now.month
day = now.day
hour = now.hour
minute = now.minute
second = now.second
milisecond = now.microsecond // 10_000
return f"Flights/rawzone/tech_year={year}/tech_month={year}-{month}/tech_day={year}-{month}-{day}/flights{year}{month}{day}{hour}{minute}{second}{milisecond}.csv"
fr_api = FlightRadar24API()
flights = fr_api.get_flights()
df = spark.createDataFrame(flights)
df.coalesce(1).write.csv(get_file_name(), mode='overwrite', header=True, sep=';')
return df
#%%
def clean_dataframe(df: DataFrame) -> DataFrame:
"""Clean dataframe"""
df = df.filter(~df.destination_airport_iata.isin(["NaN", "N/A"]))
df = df.filter(~df.origin_airport_iata.isin(["NaN", "N/A"]))
return df
#%%
def add_distance_dataframe(df: DataFrame) -> DataFrame:
"""Add details to dataframe"""
from math import sin, cos, sqrt, atan2, radians
def distance(lat1: float, lon1: float, lat2: float, lon2: float) -> float:
"""Calculate distance between two points"""
if lat1 is None or lon1 is None or lat2 is None or lon2 is None:
return -1
# approximate radius of earth in km
R = 6373.0
lat1 = radians(lat1)
lon1 = radians(lon1)
lat2 = radians(lat2)
lon2 = radians(lon2)
dlon = lon2 - lon1
dlat = lat2 - lat1
a = sin(dlat / 2)**2 + cos(lat1) * cos(lat2) * sin(dlon / 2)**2
c = 2 * atan2(sqrt(a), sqrt(1 - a))
distance = R * c
return distance
distance_udf = udf(distance, FloatType())
df_airport = spark.read.csv("airports.csv", header=True, sep=',')
df_airport = df_airport.drop("id", "ident", "type", "name", "elevation_ft", "iso_region", "municipality", "scheduled_service", "gps_code", "local_code", "home_link", "wikipedia_link", "keywords", "iso_country")
df_airport = df_airport.filter(df_airport.iata_code.isNotNull() & df_airport.continent.isNotNull())
df_airport = df_airport.withColumn("latitude_deg", df_airport["latitude_deg"].cast("float"))
df_airport = df_airport.withColumn("longitude_deg", df_airport["longitude_deg"].cast("float"))
df_airport_destination = df_airport.withColumnRenamed("iata_code", "destination_airport_iata")\
.withColumnRenamed("latitude_deg", "destination_latitude_deg")\
.withColumnRenamed("longitude_deg", "destination_longitude_deg")\
.withColumnRenamed("continent", "destination_airport_continent")
df_airport_origin = df_airport.withColumnRenamed("iata_code", "origin_airport_iata")\
.withColumnRenamed("latitude_deg", "origin_latitude_deg")\
.withColumnRenamed("longitude_deg", "origin_longitude_deg")\
.withColumnRenamed("continent", "origin_airport_continent")
df = df.join(broadcast(df_airport_destination), ["destination_airport_iata"], how='left')
df = df.join(broadcast(df_airport_origin), ["origin_airport_iata"], how='left')
df = df.withColumn("distance", distance_udf(df.origin_latitude_deg, df.origin_longitude_deg, df.destination_latitude_deg, df.destination_longitude_deg))
return df
def add_aircrafts_dataframe(df: DataFrame) -> DataFrame:
"""Add aircrafts to dataframe"""
df_aircrafts = spark.read.csv("planes.dat", header=False, sep=',')
df_aircrafts = df_aircrafts.drop("_c1")
df_aircrafts = df_aircrafts.withColumnRenamed("_c0", "aircraft_name")\
.withColumnRenamed("_c2", "aircraft_code")
df_aircrafts = df_aircrafts.filter(df_aircrafts.aircraft_code.isNotNull())
df = df.join(broadcast(df_aircrafts), df.aircraft_code == df_aircrafts.aircraft_code, how='left')
return df
def add_airlines_dataframe(df: DataFrame) -> DataFrame:
"""Add airlines to dataframe"""
df_airlines = spark.read.csv("airlines.dat", header=False, sep=',')
df_airlines = df_airlines.select("_c1","_c3", "_c4")
df_airlines = df_airlines.withColumnRenamed("_c1", "airline_name")\
.withColumnRenamed("_c3", "airline_iata")\
.withColumnRenamed("_c4", "airline_icao")
df_airlines = df_airlines.filter(df_airlines.airline_iata.isNotNull() | df_airlines.airline_icao.isNotNull())
df = df.join(broadcast(df_airlines), [(df.airline_icao == df_airlines.airline_icao) | (df.airline_iata == df_airlines.airline_iata)], how='left')
df = df.drop("airline_icao").drop("airline_iata")
return df
#%%
def get_active_flights(df: DataFrame) -> DataFrame:
"""Get active flights"""
df = df.filter(df.on_ground == 0)
return df
#%%
df = get_and_write_flights()
df = clean_dataframe(df)
df = add_distance_dataframe(df)
df = add_aircrafts_dataframe(df)
df = add_airlines_dataframe(df)
df_active = get_active_flights(df)
#%%
schema = StructType([
StructField("continent_name", StringType(), True),
StructField("continent", StringType(), True)
])
data = [("North America", "NA"),
("South America", "SA"),
("Europe", "EU"),
("Asia", "AS"),
("Africa", "AF"),
("Australia", "OC")]
df_continent = broadcast(spark.createDataFrame(data, schema))
#%%
# Q1: La compagnie avec le + de vols en cours
df_active.createOrReplaceTempView("df_active")
df_q1 = spark.sql("""SELECT airline_name, COUNT(airline_name) AS nb_flights
FROM df_active
GROUP BY airline_name
ORDER BY nb_flights DESC
LIMIT 1""")
#%%
# Q2: Pour chaque continent, la compagnie avec le + de vols régionaux actifs
df_q2 = df_active.groupBy("origin_airport_continent", "destination_airport_continent", "airline_name")\
.agg({"airline_name": "count"})\
.orderBy("count(airline_name)", ascending=False)\
.filter(df_active.origin_airport_continent == df_active.destination_airport_continent)
df_q2 = df_q2.withColumnRenamed("count(airline_name)", "number_of_flights")\
.drop("origin_airport_continent")\
.withColumnRenamed("destination_airport_continent", "continent")
df_q2.createOrReplaceTempView("df_q2")
df_q2 = spark.sql("""
SELECT continent, airline_name, number_of_flights
FROM (
SELECT continent, airline_name, number_of_flights,
ROW_NUMBER() OVER (PARTITION BY continent ORDER BY number_of_flights DESC) AS row_number
FROM df_q2
)
WHERE row_number = 1
""")
df_q2 = df_q2.join(df_continent, df_q2.continent == df_continent.continent, how='left')
df_q2 = df_q2.drop("continent")
#%%
# Q3: Le vol en cours avec le trajet le plus long
df_q3 = spark.sql("""
SELECT * FROM df_active
WHERE distance = (SELECT MAX(distance) FROM df_active)
""")
#%%
# Q4: Pour chaque continent, la longueur de vol moyenne
df.createOrReplaceTempView("df")
df_q4 = spark.sql("""
SELECT origin_airport_continent, AVG(distance) AS distance_mean
FROM df
WHERE distance > 0
GROUP BY origin_airport_continent
""")
df_q4 = df_q4.join(df_continent, df_q4.origin_airport_continent == df_continent.continent, how='left')
df_q4 = df_q4.drop("origin_airport_continent", "continent")
#%%
# Q5: L'entreprise constructeur d'avions avec le plus de vols actifs
df_q5 = df_active.groupBy("aircraft_name")\
.agg({"aircraft_name": "count"})\
.orderBy("count(aircraft_name)", ascending=False)\
.limit(1)
df_q5 = df_q5.withColumnRenamed("count(aircraft_name)", "number_of_flights")\
.withColumnRenamed("aircraft_name", "aircraft")
#%%
# Q6: Pour chaque pays de compagnie aérienne, le top 3 des modèles d'avion en usage
df_q6 = df.groupBy("airline_name", "aircraft_name")\
.agg({"airline_name": "count"})\
.orderBy("count(airline_name)", ascending=False)\
.filter(df.airline_name.isNotNull())\
.filter(df.aircraft_name.isNotNull())
df_q6 = df_q6.withColumnRenamed("count(airline_name)", "number_of_flights")
df_q6.createOrReplaceTempView("df_q6")
df_q6 = spark.sql("""
SELECT airline_name, aircraft_name, number_of_flights
FROM (
SELECT airline_name, aircraft_name, number_of_flights,
ROW_NUMBER() OVER (PARTITION BY airline_name ORDER BY number_of_flights DESC) AS row_number
FROM df_q6
)
WHERE row_number <= 3
""")
#%%
# Question Bonus: Quel aéroport a la plus grande différence entre le nombre de vol sortant et le nombre de vols entrants ?
df_qb_1 = spark.sql("""
SELECT origin_airport_iata, COUNT(id) AS nb_departures
FROM df
GROUP BY origin_airport_iata
""")
df_qb_2 = spark.sql("""
SELECT destination_airport_iata, COUNT(id) AS nb_arrivals
FROM df
GROUP BY destination_airport_iata
""")
# Clean des valeurs nuls
df_qb_1 = df_qb_1.filter(df_qb_1.origin_airport_iata.isNotNull())
df_qb_2 = df_qb_2.filter(df_qb_2.destination_airport_iata.isNotNull())
df_qb = df_qb_1.join(df_qb_2, df_qb_1.origin_airport_iata == df_qb_2.destination_airport_iata)
df_qb = df_qb.withColumn("difference", expr("abs(nb_departures - nb_arrivals)"))
df_qb = df_qb.drop("origin_airport_iata", "nb_departures", "nb_arrivals")\
.withColumnRenamed("destination_airport_iata", "airport_iata")
df_qb.createOrReplaceTempView("df_qb")
df_qb = spark.sql("""
SELECT * FROM df_qb
WHERE difference = (SELECT MAX(difference) FROM df_qb)
""")
#%%
# Clean des vues
spark.catalog.dropTempView("df")
spark.catalog.dropTempView("df_active")
spark.catalog.dropTempView("df_q2")
spark.catalog.dropTempView("df_q6")
spark.catalog.dropTempView("df_qb")
#%%
# Affichage Q1
df_q1.show()
#%%
# Affichage Q2
df_q2.show()
#%%
# Affichage Q3
df_q3.show()
#%%
# Affichage Q4
df_q4.show()
#%%
# Affichage Q5
df_q5.show()
#%%
# Affichage Q6
df_q6.show()
#%%
# Affichage QB
df_qb.show()