-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscript.js
74 lines (67 loc) · 2.77 KB
/
script.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
//jshint esversion:8
let model;
(async function loadChachModel() {
// load the model after page loaded and Chach it
const loadstart = window.performance.now();
model = await tf.loadGraphModel("tfjs_graph/model.json"); // load model
prediction = await model.predict(tf.zeros([1, 128, 128, 3])); //Fake prediction for chaching
console.log("model loaded");
const loadends = window.performance.now(); //count how long for the model to fully load
$("#ui").show(600);
$("#loading").hide(600);
$("#loadTime").html(Math.round(loadends - loadstart) + ' ms');
})();
// this function handles url prdiction call from button click
function imgUrl() {
const form_image = document.getElementById("url");
var img = new Image();
img.crossOrigin = "anonymous";
img.src = form_image.value;
console.log(img.src);
document.getElementById("myImg").src = img.src;
// once we assign to my img a url image we trggering the
// event listen on change and get a prediction
imageLoaded(img); // call procsesing function, and prediction
}
// listen to change on img
document
.querySelector('input[type="file"]')
.addEventListener("change", function () {
if (this.files && this.files[0]) {
var imgfirst = document.querySelector("img");
imageLoaded(imgfirst); // call proces and prediction functions
imgfirst.src = URL.createObjectURL(this.files[0]); // set src to blob url
}
});
// TODO: only get prediction from url after uploading a pic????
// FIXED
function imageLoaded(img) {
img.onload = () => {
const timeStart = window.performance.now(); // start counting when img loaded
//procsses the image
const dataImage = tf.browser.fromPixels(img)
.resizeBilinear([128, 128]); // assign tf tensor and resize the shape of the img
const preprocessedInput = dataImage.expandDims(); // expand dimantions as the model requires
// call the prediction functhin and update the scores and runnig time of prediction
sendToPredict(preprocessedInput).then((result) =>
updateScore(result[0][0],
result[0][1],
window.performance.now() - timeStart)
);
URL.revokeObjectURL(img.src); // no longer needed, free memory
};
}
// The prediction function
async function sendToPredict(preprocessedInputToArray) {
// const model = await tf.loadGraphModel("tfjs_graph/model.json");
// console.log("model loaded");
const prediction = await model.predict(preprocessedInputToArray); // call tfjs prdict
return prediction.array(); // return the prediction as an array
}
// this function Updates the score of the prediction and the runnig time
function updateScore(cat, dog, timeTook) {
$("#catScore").html(cat * 100 + "%,");
$("#dogScore").html(dog * 100 + "%");
$("#run").show(600);
$("#runningTime").html(Math.round(timeTook) + ' ms');
}