-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy paththreshold_check.py
224 lines (183 loc) · 8.65 KB
/
threshold_check.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import os
import pandas as pd
import logging
from typing import Optional, Dict, List
import json
import subprocess
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
def load_thresholds():
"""Fetch the latest thresholds from the Kubernetes ConfigMap and apply a 15% increase."""
try:
# Fetch ConfigMap data from Kubernetes
result = subprocess.run(
["kubectl", "get", "configmap", "pod-thresholds", "-n", "default", "-o", "jsonpath={.data.pod_thresholds\\.json}"],
capture_output=True, text=True, check=True
)
raw_json = result.stdout.strip()
if not raw_json:
logger.error("ConfigMap `pod-thresholds` is empty or missing.")
return None
# Log the raw JSON for debugging
logger.info(f"Raw ConfigMap JSON: {raw_json}")
pod_thresholds = json.loads(raw_json)
if not isinstance(pod_thresholds, dict):
logger.error(f"Unexpected JSON format: {pod_thresholds}")
return None
# Apply 15% increase to each value
updated_thresholds = {
pod: {
"Memory": round(metrics["Memory"] * 1.15, 2),
"CPU": round(metrics["CPU"] * 1.15, 2)
}
for pod, metrics in pod_thresholds.items()
}
logger.info(f"Updated pod thresholds: {updated_thresholds}")
return updated_thresholds
except Exception as e:
logger.error(f"Failed to load thresholds from ConfigMap: {e}")
return None
class ThresholdChecker:
def __init__(
self,
output_dir: str = "output",
duration_threshold: int = 30, # in seconds
pod_thresholds: Optional[Dict[str, Dict[str, float]]] = None
):
self.output_dir = output_dir
self.duration_threshold = duration_threshold
self.pod_thresholds = pod_thresholds or {}
self.violations = {
"Memory": [],
"CPU": []
}
def calculate_breach_percentage(self, value: float, threshold: float) -> float:
"""Calculate how much the value exceeded the threshold by percentage."""
return ((value - threshold) / threshold) * 100
def get_threshold(self, pod: str, metric_type: str) -> Optional[float]:
"""Get the threshold for a specific pod and metric type."""
if pod in self.pod_thresholds and metric_type in self.pod_thresholds[pod]:
return self.pod_thresholds[pod][metric_type]
return None
def check_thresholds(self, file_path: str, metric_type: str) -> None:
"""Check if any values exceed the threshold for a sustained period."""
if not os.path.exists(file_path):
logger.info(f"File {file_path} not found. Skipping {metric_type} analysis.")
return
try:
df = pd.read_csv(file_path)
if df.empty:
logger.info(f"{metric_type} data file is empty.")
return
df["Time"] = pd.to_datetime(df["Time"])
# Analyze each pod separately
for pod in df["Pod"].unique():
pod_data = df[df["Pod"] == pod].copy()
pod_data = pod_data.sort_values("Time")
# Get the threshold for the current pod
threshold = self.get_threshold(pod, metric_type)
if threshold is None:
logger.warning(f"No threshold defined for pod {pod} and metric {metric_type}. Skipping.")
continue
# Find periods where threshold is exceeded
pod_data["violation"] = pod_data["Value"] > threshold
pod_data["violation_group"] = (
pod_data["violation"] != pod_data["violation"].shift()
).cumsum()
# Analyze each violation period
for _, group in pod_data[pod_data["violation"]].groupby("violation_group"):
duration_seconds = (
group["Time"].max() - group["Time"].min()
).total_seconds()
if duration_seconds >= self.duration_threshold:
max_value = round(group["Value"].max(), 2)
avg_value = round(group["Value"].mean(), 2)
breach_pct = self.calculate_breach_percentage(max_value, threshold)
violation = {
"pod": pod,
"start_time": group["Time"].min().isoformat(),
"end_time": group["Time"].max().isoformat(),
"duration_seconds": round(duration_seconds, 2),
"max_value": max_value,
"avg_value": avg_value,
"threshold": threshold,
"breach_percentage": round(breach_pct, 2)
}
self.violations[metric_type].append(violation)
# Log the violation with detailed information
unit = "MiB" if metric_type == "Memory" else "cores"
logger.warning(
f"\n{metric_type} threshold breach detected:"
f"\nPod: {pod}"
f"\n- Breach Period: {violation['start_time']} to {violation['end_time']}"
f"\n- Duration: {duration_seconds:.2f} seconds"
f"\n- Peak Usage: {max_value} {unit} ({breach_pct:.1f}% over threshold)"
f"\n- Average Usage: {avg_value} {unit}"
f"\n- Threshold: {threshold} {unit}"
)
except Exception as e:
logger.error(f"Error analyzing {metric_type} data: {str(e)}")
def generate_report(self) -> Dict:
"""Generate a summary report of all violations."""
# Group violations by pod
pod_summary = {}
for metric_type, violations in self.violations.items():
for violation in violations:
pod = violation["pod"]
if pod not in pod_summary:
pod_summary[pod] = {"Memory": 0, "CPU": 0}
pod_summary[pod][metric_type] += 1
return {
"summary": {
"total_memory_violations": len(self.violations["Memory"]),
"total_cpu_violations": len(self.violations["CPU"]),
"violations_by_pod": pod_summary,
"thresholds": {
"duration_seconds": self.duration_threshold
}
},
"violations": self.violations
}
def save_report(self) -> None:
"""Save the analysis report to a JSON file."""
if any(self.violations.values()):
try:
report = self.generate_report()
report_path = os.path.join(self.output_dir, "threshold_report.json")
with open(report_path, "w") as f:
json.dump(report, f, indent=2)
logger.info(f"\nDetailed report saved to: {report_path}")
except Exception as e:
logger.error(f"Error saving report: {str(e)}")
def run(self) -> None:
"""Execute threshold checking on collected metrics."""
logger.info(
f"Starting threshold analysis:"
f"\n Duration Threshold: {self.duration_threshold} seconds"
)
memory_file = os.path.join(self.output_dir, "memory_metrics.csv")
cpu_file = os.path.join(self.output_dir, "cpu_metrics.csv")
self.check_thresholds(memory_file, "Memory")
self.check_thresholds(cpu_file, "CPU")
if any(self.violations.values()):
self.save_report()
else:
logger.info("No threshold violations detected.")
if __name__ == "__main__":
output_dir = os.getenv('OUTPUT_DIR', 'output')
logger.info(f"Using output directory: {output_dir}")
# Dynamically load thresholds
pod_thresholds = load_thresholds()
if pod_thresholds:
checker = ThresholdChecker(
output_dir=output_dir,
duration_threshold=10, # 10 seconds
pod_thresholds=pod_thresholds
)
checker.run()
else:
logger.error("Failed to retrieve updated thresholds. Exiting.")