forked from WHU-AISE/TVDiag
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
114 lines (93 loc) · 4.34 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import argparse
from datetime import datetime
import os
import random
from helper.logger import get_logger
import dgl
import torch
import numpy as np
from torch.utils.data import DataLoader
from core.TransTVDiag import TransTVDiag
from prepare_data import prepare_for_graphormer
from process.EventProcess import EventProcess
import warnings
warnings.filterwarnings('ignore')
parser = argparse.ArgumentParser()
# common
parser.add_argument('--seed', type=int, default=2)
parser.add_argument('--log_step', type=int, default=20)
parser.add_argument('--eval_period', type=int, default=10)
parser.add_argument('--reconstruct', type=bool, default=True)
parser.add_argument('--gpu_devices', type=str, default='0')
parser.add_argument('--train', type=bool, default=True)
parser.add_argument('--evaluate', type=bool, default=True)
parser.add_argument('--no_train', dest='train', action='store_false')
parser.add_argument('--no_evaluate', dest='evaluate', action='store_false')
parser.add_argument('--no_reconstruct', dest='reconstruct', action='store_false')
parser.add_argument('--experiment_label', type=str, default='')
# dataset
parser.add_argument('--dataset', type=str, default='gaia', help='name of dataset')
parser.add_argument('--labels_file', type=str, default='label_15_85.csv', help="path to labels file")
parser.add_argument('--N_T', type=int, default=5, help='number of failure types')
parser.add_argument('--N_I', type=int, default=10, help='number of instances')
# TVDiag
parser.add_argument('--lr', type=float, default=0.001)
parser.add_argument('--weight_decay', type=float, default=0.0001)
parser.add_argument('--patience', type=int, default=10)
parser.add_argument('--embedding_dim', type=int, default=128)
parser.add_argument('--seq_hidden', type=int, default=128)
parser.add_argument('--linear_hidden', type=list, default=[64])
parser.add_argument('--graph_hidden', type=int, default=64)
parser.add_argument('--num_heads', type=int, default=8)
parser.add_argument('--num_layers', type=int, default=2)
parser.add_argument('--graph_out', type=int, default=32)
parser.add_argument('--feat_drop', type=float, default=0)
parser.add_argument('--attn_drop', type=float, default=0)
parser.add_argument('--aggregator', type=str, default='lstm')
parser.add_argument('--TO', default=False, action='store_true')
parser.add_argument('--CM', default=False, action='store_true')
parser.add_argument('--temperature', type=float, default=0.3)
parser.add_argument('--guide_weight', type=float, default=0.1)
parser.add_argument('--dynamic_weight', action='store_true')
parser.add_argument('--epochs', type=int, default=3000)
parser.add_argument('--batch_size', type=int, default=128)
parser.add_argument('--aug_percent', type=float, default=0.2)
args = parser.parse_args()
def set_seed(seed):
dgl.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
def collate(samples):
graphs, labels = map(list, zip(*samples))
labels = torch.tensor(labels)
return prepare_for_graphormer(graphs, labels)
def build_dataloader(args, logger):
reconstruct = args.reconstruct
processor = EventProcess(args, logger)
train_data, test_data = processor.process(reconstruct=reconstruct)
train_dataloader = DataLoader(train_data, batch_size=args.batch_size, shuffle=True, collate_fn=collate) if args.train else None
test_dataloader = DataLoader(test_data, batch_size=1, shuffle=False, collate_fn=collate) if args.evaluate else None
return train_dataloader, test_dataloader
if __name__ == '__main__':
task_name = 'TransTVDiag' if len(args.experiment_label) == 0 else f'TransTVDiag-{datetime.now().isoformat()}-{args.experiment_label}'
logger = get_logger(f'logs/{args.dataset}', task_name)
use_gpu = torch.cuda.is_available()
set_seed(args.seed)
if use_gpu:
logger.info("Currently using GPU {}".format(args.gpu_devices))
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_devices
device='cuda'
else:
logger.info("Currently using CPU (GPU is highly recommended)")
device = 'cpu'
logger.info("Load dataset")
train_dl, test_dl = build_dataloader(args, logger)
logger.info("Training...")
model = TransTVDiag(args, logger, device)
if args.train:
model.train(train_dl)
if args.evaluate:
model.evaluate(test_dl)