-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathdas.py
206 lines (182 loc) · 7.85 KB
/
das.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
from numpy import add
import torch
import os
import argparse
from transformers import AutoTokenizer, AutoModelForCausalLM, GPTNeoXForCausalLM
from utils import WEIGHTS
from data import Dataset
from eval import eval, augment_data
from train import train_das, train_feature_direction
from diff_methods import method_mapping, additional_method_mapping, probe_mapping
import datetime
import json
from typing import Union
from pyvene.models.intervenable_base import IntervenableModel
from interventions import *
# make das subdir
if not os.path.exists("figs/das"):
os.makedirs("figs/das")
if not os.path.exists("figs/das/steps"):
os.makedirs("figs/das/steps")
if not os.path.exists("logs/das"):
os.makedirs("logs/das")
# clear files from figs/das/steps
for file in os.listdir("figs/das/steps"):
os.remove(os.path.join("figs/das/steps", file))
def experiment(
model: str,
dataset: str,
steps: int,
eval_steps: int,
grad_steps: int,
batch_size: int,
intervention_site: str,
strategy: str,
lr: float,
only_das: bool=False,
hparam_non_das: bool=False,
das_label: str=None,
revision: str="main",
log_folder: str="das",
manipulate: Union[str, None]=None,
tokenizer: Union[AutoTokenizer, None]=None,
gpt: Union[AutoModelForCausalLM, None]=None,
):
"""Run a feature-finding experiment."""
# load model
total_data = []
diff_vectors = []
NOW = datetime.datetime.now().strftime("%Y%m%d%H%M%S%f")
device = "cuda:0" if torch.cuda.is_available() else "cpu"
if tokenizer is None:
tokenizer = AutoTokenizer.from_pretrained(model)
tokenizer.pad_token = tokenizer.eos_token
if gpt is None:
weight_type = WEIGHTS.get(model, torch.float16) if device == "cuda:0" else torch.float32
gpt = GPTNeoXForCausalLM.from_pretrained(
model,
revision=revision,
torch_dtype=weight_type,
use_flash_attention_2=(weight_type in [torch.bfloat16, torch.float16] and device == "cuda:0"),
).to(device)
print(model, gpt.config.num_hidden_layers)
gpt.eval()
# make dataset, ensuring examples in trainset are not in evalset
data_source = Dataset.load_from(dataset)
trainset = data_source.sample_batches(tokenizer, batch_size, steps, device, seed=42, manipulate=manipulate)
print(trainset[0])
discard = set()
for batch in trainset:
for pair in batch.pairs:
discard.add(''.join(pair.base))
# evalset
eval_seed = 420 if hparam_non_das else 1
evalset = data_source.sample_batches(tokenizer, batch_size, 25, device, seed=eval_seed, discard=discard, manipulate=manipulate)
# methods
if hparam_non_das:
method_mapping.update(additional_method_mapping)
if model in probe_mapping:
for i, probe_func in enumerate(probe_mapping[model]):
method_mapping[f"probe_{i}"] = probe_func
print(list(method_mapping.keys()))
# entering train loops
for pos_i in range(data_source.first_var_pos, data_source.length):
if trainset[0].compute_pos(strategy)[0][0][pos_i][0] == -1:
continue
# per-layer training loop
iterator = range(gpt.config.num_hidden_layers)
for layer_i in iterator:
print(f"position {pos_i} ({data_source.span_names[pos_i]}), layer {layer_i}")
data = []
# vanilla intervention
if strategy != "all" and not only_das:
intervenable_config = intervention_config(
intervention_site, pv.VanillaIntervention, layer_i, 0
)
intervenable = IntervenableModel(intervenable_config, gpt)
intervenable.set_device(device)
intervenable.disable_model_gradients()
more_data, summary, _ = eval(intervenable, evalset, layer_i, pos_i, strategy)
intervenable._cleanup_states()
data.extend(augment_data(more_data, {"method": "vanilla", "step": -1}))
print(f"vanilla: {summary}")
# DAS intervention
intervenable_config = intervention_config(
intervention_site,
pv.LowRankRotatedSpaceIntervention if strategy != "all" else PooledLowRankRotatedSpaceIntervention,
layer_i, 1
)
intervenable = IntervenableModel(intervenable_config, gpt)
intervenable.set_device(device)
intervenable.disable_model_gradients()
_, more_data, activations, eval_activations, diff_vector = train_das(
intervenable, trainset, evalset, layer_i, pos_i, strategy,
eval_steps, grad_steps, lr=lr, das_label="das" if das_label is None else das_label)
diff_vectors.append({"method": "das" if das_label is None else das_label,
"layer": layer_i, "pos": pos_i, "vec": diff_vector})
data.extend(more_data)
# test other methods
if not only_das:
for method in list(method_mapping.keys()):
try:
more_data, summary, diff_vector = train_feature_direction(
method, intervenable, activations, eval_activations,
evalset, layer_i, pos_i, strategy, intervention_site,
method_mapping
)
print(f"{method}: {summary}")
diff_vectors.append({"method": method, "layer": layer_i, "pos": pos_i, "vec": diff_vector})
data.extend(more_data)
except:
continue
# store all data
total_data.extend(augment_data(data, {"layer": layer_i, "pos": pos_i}))
# make data dump
short_dataset_name = dataset.split('/')[-1]
short_model_name = model.split('/')[-1] + (f"_{revision}" if revision != "main" else "")
filedump = {
"metadata": {
"model": model + (f"_{revision}" if revision != "main" else ""),
"dataset": dataset,
"steps": steps,
"eval_steps": eval_steps,
"grad_steps": grad_steps,
"batch_size": batch_size,
"intervention_site": intervention_site,
"strategy": strategy,
"lr": lr,
"span_names": data_source.span_names,
"manipulate": manipulate,
},
"data": total_data,
"vec": diff_vectors,
}
# log
if manipulate is None:
manipulate = "orig"
log_file = f"logs/{log_folder}/{NOW}__{short_model_name}__{short_dataset_name}__{manipulate}.json"
print(f"logging to {log_file}")
with open(log_file, "w") as f:
json.dump(filedump, f)
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--model", type=str, default="EleutherAI/pythia-70m")
parser.add_argument("--dataset", type=str, default="syntaxgym/agr_gender")
parser.add_argument("--steps", type=int, default=100)
parser.add_argument("--eval-steps", type=int, default=25)
parser.add_argument("--grad-steps", type=int, default=1)
parser.add_argument("--batch-size", type=int, default=4)
parser.add_argument("--intervention-site", type=str, default="block_output")
parser.add_argument("--strategy", type=str, default="last")
parser.add_argument("--lr", type=float, default=5e-3)
parser.add_argument("--only-das", action="store_true")
parser.add_argument("--hparam-non-das", action="store_true")
parser.add_argument("--das-label", type=str, default=None)
parser.add_argument("--revision", type=str, default="main")
parser.add_argument("--log-folder", type=str, default="das")
parser.add_argument("--manipulate", type=str, default=None)
args = parser.parse_args()
print(vars(args))
experiment(**vars(args))
if __name__ == "__main__":
main()