-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathtrain_qt.py
241 lines (211 loc) · 8.99 KB
/
train_qt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
"""
pretrain using qt, to get neural representation, then run kmeans on various
combinations of the resulting representations
this was forked initially from train.py, then modified
"""
import argparse
import datetime
import copy
import time
import numpy as np
import sklearn.cluster
import warnings
import torch
from torch import autograd
from proc_data import Dataset
from model.multiview_encoders import MultiviewEncoders
from metrics import cluster_metrics
import pretrain
warnings.filterwarnings(action='ignore', category=RuntimeWarning)
torch.manual_seed(0)
np.random.seed(0)
LSTM_LAYER = 1
LSTM_HIDDEN = 300
WORD_DROPOUT_RATE = 0.
DROPOUT_RATE = 0.
BATCH_SIZE = 32
LEARNING_RATE = 0.001
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def transform(data, model):
model.eval()
latent_zs = []
n_batch = (len(data) + BATCH_SIZE - 1) // BATCH_SIZE
for i in range(n_batch):
data_batch = data[i*BATCH_SIZE:(i+1)*BATCH_SIZE]
with autograd.no_grad():
latent_z = model(data_batch, encoder='v1')
latent_zs.append(latent_z.cpu().data.numpy())
latent_zs = np.concatenate(latent_zs)
return latent_zs
def calc_prec_rec_f1_acc(preds, golds):
lgolds, lpreds = [], []
for g, p in zip(golds, list(preds)):
if g > 0:
lgolds.append(g)
lpreds.append(p)
prec, rec, f1 = cluster_metrics.calc_prec_rec_f1(
gnd_assignments=torch.LongTensor(lgolds).to(device),
pred_assignments=torch.LongTensor(lpreds).to(device))
acc = cluster_metrics.calc_ACC(
torch.LongTensor(lpreds).to(device), torch.LongTensor(lgolds).to(device))
return prec, rec, f1, acc
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--data-path', type=str, default='./data/airlines_processed.csv')
parser.add_argument('--glove-path', type=str, default='./data/glove.840B.300d.txt')
parser.add_argument('--pre-epoch', type=int, default=5)
parser.add_argument('--pt-batch', type=int, default=100)
parser.add_argument('--scenarios', type=str, default='view1,view2,concatviews,wholeconv',
help='comma-separated, from [view1|view2|concatviews|wholeconv|mvsc]')
parser.add_argument('--mvsc-no-unk', action='store_true',
help='only feed non-unk data to MVSC (to avoid oom)')
parser.add_argument('--view1-col', type=str, default='view1')
parser.add_argument('--view2-col', type=str, default='view2')
parser.add_argument('--label-col', type=str, default='tag')
args = parser.parse_args()
print('loading dataset')
dataset = Dataset(args.data_path, view1_col=args.view1_col, view2_col=args.view2_col,
label_col=args.label_col)
n_cluster = len(dataset.id_to_label) - 1
print("num of class = %d" % n_cluster)
id_to_token, token_to_id = dataset.id_to_token, dataset.token_to_id
vocab_size = len(dataset.token_to_id)
print('vocab_size', vocab_size)
# Load pre-trained GloVe vectors
pretrained = {}
word_emb_size = 0
print('loading glove')
for line in open(args.glove_path):
parts = line.strip().split()
if len(parts) % 100 != 1:
continue
word = parts[0]
if word not in token_to_id:
continue
vector = [float(v) for v in parts[1:]]
pretrained[word] = vector
word_emb_size = len(vector)
pretrained_list = []
scale = np.sqrt(3.0 / word_emb_size)
print('loading oov')
for word in id_to_token:
# apply lower() because all GloVe vectors are for lowercase words
if word.lower() in pretrained:
pretrained_list.append(np.array(pretrained[word.lower()]))
else:
random_vector = np.random.uniform(-scale, scale, [word_emb_size])
pretrained_list.append(random_vector)
model = MultiviewEncoders.from_embeddings(
embeddings=torch.FloatTensor(pretrained_list),
num_layers=LSTM_LAYER,
embedding_size=word_emb_size,
lstm_hidden_size=LSTM_HIDDEN,
word_dropout=WORD_DROPOUT_RATE,
dropout=DROPOUT_RATE,
vocab_size=vocab_size
)
model.to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE)
expressions = (model, optimizer)
pre_acc, pre_state = 0., None
pretrain_method = pretrain.pretrain_qt
for epoch in range(1, args.pre_epoch + 1):
model.train()
perm_idx = np.random.permutation(dataset.trn_idx)
trn_loss, _ = pretrain_method(dataset, perm_idx, expressions, train=True)
model.eval()
_, tst_acc = pretrain_method(dataset, dataset.tst_idx, expressions, train=False)
if tst_acc > pre_acc:
pre_state = copy.deepcopy(model.state_dict())
pre_acc = tst_acc
print(f'{datetime.datetime.now()} epoch {epoch}, train_loss={trn_loss:.4f} '
f'test_acc={tst_acc:.4f}')
if args.pre_epoch > 0:
# load best state
model.load_state_dict(pre_state)
# deepcopy pretrained views into v1 and/or view2
pretrain.after_pretrain_qt(model)
kmeans = sklearn.cluster.KMeans(n_clusters=n_cluster, max_iter=300, verbose=0, random_state=0)
golds = [dataset[idx][1] for idx in dataset.trn_idx]
for rep in args.scenarios.split(','):
if rep == 'view1':
data = [dataset[idx][0][0] for idx in dataset.trn_idx]
encoded = transform(data=data, model=model)
preds = kmeans.fit_predict(encoded)
elif rep == 'view2':
data = [dataset[idx][0][1] for idx in dataset.trn_idx]
encoded = []
for conv in data:
encoded_conv = transform(data=conv, model=model)
encoded_conv = torch.from_numpy(encoded_conv)
encoded_conv = encoded_conv.mean(dim=0)
encoded.append(encoded_conv)
encoded = torch.stack(encoded, dim=0)
# print('encoded.size()', encoded.size())
encoded = encoded.numpy()
preds = kmeans.fit_predict(encoded)
elif rep == 'concatviews':
v1_data = [dataset[idx][0][0] for idx in dataset.trn_idx]
v1_encoded = torch.from_numpy(transform(data=v1_data, model=model))
v2_data = [dataset[idx][0][1] for idx in dataset.trn_idx]
v2_encoded = []
for conv in v2_data:
encoded_conv = transform(data=conv, model=model)
encoded_conv = torch.from_numpy(encoded_conv)
encoded_conv = encoded_conv.mean(dim=0)
v2_encoded.append(encoded_conv)
v2_encoded = torch.stack(v2_encoded, dim=0)
concatview = torch.cat([v1_encoded, v2_encoded], dim=-1)
print('concatview.size()', concatview.size())
encoded = concatview.numpy()
preds = kmeans.fit_predict(encoded)
elif rep == 'wholeconv':
encoded = []
for idx in dataset.trn_idx:
v1 = dataset[idx][0][0]
v2 = dataset[idx][0][1]
conv = [v1] + v2
encoded_conv = transform(data=conv, model=model)
encoded_conv = torch.from_numpy(encoded_conv)
encoded_conv = encoded_conv.mean(dim=0)
encoded.append(encoded_conv)
encoded = torch.stack(encoded, dim=0)
print('encoded.size()', encoded.size())
encoded = encoded.numpy()
preds = kmeans.fit_predict(encoded)
elif rep == 'mvsc':
try:
import multiview
except Exception:
print('please install https://github.com/mariceli3/multiview')
return
print('imported multiview ok')
idx = dataset.trn_idx_no_unk if args.mvsc_no_unk else dataset.trn_idx
v1_data = [dataset[idx][0][0] for idx in idx]
v1_encoded = torch.from_numpy(transform(data=v1_data, model=model))
v2_data = [dataset[idx][0][1] for idx in idx]
v2_encoded = []
for conv in v2_data:
encoded_conv = transform(data=conv, model=model)
encoded_conv = torch.from_numpy(encoded_conv)
encoded_conv = encoded_conv.mean(dim=0)
v2_encoded.append(encoded_conv)
v2_encoded = torch.stack(v2_encoded, dim=0)
mvsc = multiview.mvsc.MVSC(
k=n_cluster
)
print('running mvsc', end='', flush=True)
start = time.time()
preds, eivalues, eivectors, sigmas = mvsc.fit_transform(
[v1_encoded, v2_encoded], [False] * 2
)
print('...done')
mvsc_time = time.time() - start
print('time taken %.3f' % mvsc_time)
else:
raise Exception('unimplemented rep', rep)
prec, rec, f1, acc = calc_prec_rec_f1_acc(preds, golds)
print(f'{datetime.datetime.now()} {rep}: eval prec={prec:.4f} rec={rec:.4f} f1={f1:.4f} '
f'acc={acc:.4f}')
if __name__ == '__main__':
main()