@@ -220,8 +220,6 @@ def __init__(
220
220
self .include = include
221
221
self .exclude = exclude
222
222
223
- self .X_valid = self .datamanager .data .get ("X_valid" )
224
- self .y_valid = self .datamanager .data .get ("Y_valid" )
225
223
self .X_test = self .datamanager .data .get ("X_test" )
226
224
self .y_test = self .datamanager .data .get ("Y_test" )
227
225
@@ -359,7 +357,6 @@ def finish_up(
359
357
loss : Union [Dict [str , float ], float ],
360
358
train_loss : Optional [Dict [str , float ]],
361
359
opt_pred : np .ndarray ,
362
- valid_pred : np .ndarray ,
363
360
test_pred : np .ndarray ,
364
361
additional_run_info : Optional [TYPE_ADDITIONAL_INFO ],
365
362
file_output : bool ,
@@ -382,19 +379,12 @@ def finish_up(
382
379
self .duration = time .time () - self .starttime
383
380
384
381
if file_output :
385
- file_out_loss , additional_run_info_ = self .file_output (
386
- opt_pred ,
387
- valid_pred ,
388
- test_pred ,
389
- )
382
+ file_out_loss , additional_run_info_ = self .file_output (opt_pred , test_pred )
390
383
else :
391
384
file_out_loss = None
392
385
additional_run_info_ = {}
393
386
394
- validation_loss , test_loss = self .calculate_auxiliary_losses (
395
- valid_pred ,
396
- test_pred ,
397
- )
387
+ test_loss = self .calculate_auxiliary_losses (test_pred )
398
388
399
389
if file_out_loss is not None :
400
390
return self .duration , file_out_loss , self .seed , additional_run_info_
@@ -424,8 +414,6 @@ def finish_up(
424
414
additional_run_info ["train_loss" ] = [
425
415
train_loss [metric .name ] for metric in self .metrics
426
416
]
427
- if validation_loss is not None :
428
- additional_run_info ["validation_loss" ] = validation_loss
429
417
if test_loss is not None :
430
418
additional_run_info ["test_loss" ] = test_loss
431
419
@@ -442,41 +430,22 @@ def finish_up(
442
430
443
431
def calculate_auxiliary_losses (
444
432
self ,
445
- Y_valid_pred : np .ndarray ,
446
- Y_test_pred : np .ndarray ,
447
- ) -> Tuple [Optional [float | Sequence [float ]], Optional [float | Sequence [float ]]]:
448
- if Y_valid_pred is not None :
449
- if self .y_valid is not None :
450
- validation_loss : Optional [Union [float , Dict [str , float ]]] = self ._loss (
451
- self .y_valid , Y_valid_pred
452
- )
453
- if len (self .metrics ) == 1 :
454
- validation_loss = validation_loss [self .metrics [0 ].name ]
455
- else :
456
- validation_loss = None
457
- else :
458
- validation_loss = None
433
+ Y_test_pred : np .ndarray | None ,
434
+ ) -> float | dict [str , float ] | None :
435
+ if Y_test_pred is None or self .y_test is None :
436
+ return None
459
437
460
- if Y_test_pred is not None :
461
- if self .y_test is not None :
462
- test_loss : Optional [Union [float , Dict [str , float ]]] = self ._loss (
463
- self .y_test , Y_test_pred
464
- )
465
- if len (self .metrics ) == 1 :
466
- test_loss = test_loss [self .metrics [0 ].name ]
467
- else :
468
- test_loss = None
469
- else :
470
- test_loss = None
438
+ test_loss = self ._loss (self .y_test , Y_test_pred )
439
+ if len (self .metrics ) == 1 :
440
+ test_loss = test_loss [self .metrics [0 ].name ]
471
441
472
- return validation_loss , test_loss
442
+ return test_loss
473
443
474
444
def file_output (
475
445
self ,
476
446
Y_optimization_pred : np .ndarray ,
477
- Y_valid_pred : np .ndarray ,
478
447
Y_test_pred : np .ndarray ,
479
- ) -> Tuple [ Optional [ float ], Dict [ str , Union [str , int , float , List , Dict , Tuple ] ]]:
448
+ ) -> tuple [ float | None , dict [str , Any ]]:
480
449
# Abort if self.Y_optimization is None
481
450
# self.Y_optimization can be None if we use partial-cv, then,
482
451
# obviously no output should be saved.
@@ -496,12 +465,7 @@ def file_output(
496
465
)
497
466
498
467
# Abort if predictions contain NaNs
499
- for y , s in [
500
- # Y_train_pred deleted here. Fix unittest accordingly.
501
- [Y_optimization_pred , "optimization" ],
502
- [Y_valid_pred , "validation" ],
503
- [Y_test_pred , "test" ],
504
- ]:
468
+ for y , s in [(Y_optimization_pred , "optimization" ), (Y_test_pred , "test" )]:
505
469
if y is not None and not np .all (np .isfinite (y )):
506
470
return (
507
471
1.0 ,
@@ -553,14 +517,13 @@ def file_output(
553
517
budget = self .budget ,
554
518
model = self .model if "model" not in self .disable_file_output else None ,
555
519
cv_model = models if "cv_model" not in self .disable_file_output else None ,
520
+ # TODO: below line needs to be deleted once backend is updated
521
+ valid_predictions = None ,
556
522
ensemble_predictions = (
557
523
Y_optimization_pred
558
524
if "y_optimization" not in self .disable_file_output
559
525
else None
560
526
),
561
- valid_predictions = (
562
- Y_valid_pred if "y_valid" not in self .disable_file_output else None
563
- ),
564
527
test_predictions = (
565
528
Y_test_pred if "y_test" not in self .disable_file_output else None
566
529
),
0 commit comments