#!/usr/bin/env python """ Parts of this file were taken from the pyzmq project (https://github.com/zeromq/pyzmq) which have been permitted for use under the BSD license. Parts are from lxml (https://github.com/lxml/lxml) """ import os from os.path import join as pjoin import pkg_resources import sys import shutil from distutils.version import LooseVersion from setuptools import setup, Command, find_packages # versioning import versioneer cmdclass = versioneer.get_cmdclass() def is_platform_windows(): return sys.platform == 'win32' or sys.platform == 'cygwin' def is_platform_linux(): return sys.platform == 'linux2' def is_platform_mac(): return sys.platform == 'darwin' min_cython_ver = '0.24' try: import Cython ver = Cython.__version__ _CYTHON_INSTALLED = ver >= LooseVersion(min_cython_ver) except ImportError: _CYTHON_INSTALLED = False min_numpy_ver = '1.9.0' setuptools_kwargs = { 'install_requires': [ 'python-dateutil >= 2.5.0', 'pytz >= 2011k', 'numpy >= {numpy_ver}'.format(numpy_ver=min_numpy_ver), ], 'setup_requires': ['numpy >= {numpy_ver}'.format(numpy_ver=min_numpy_ver)], 'zip_safe': False, } from distutils.extension import Extension # noqa:E402 from distutils.command.build import build # noqa:E402 from distutils.command.build_ext import build_ext as _build_ext # noqa:E402 try: if not _CYTHON_INSTALLED: raise ImportError('No supported version of Cython installed.') try: from Cython.Distutils.old_build_ext import old_build_ext as _build_ext # noqa:F811,E501 except ImportError: # Pre 0.25 from Cython.Distutils import build_ext as _build_ext cython = True except ImportError: cython = False if cython: try: try: from Cython import Tempita as tempita except ImportError: import tempita except ImportError: raise ImportError('Building pandas requires Tempita: ' 'pip install Tempita') _pxi_dep_template = { 'algos': ['_libs/algos_common_helper.pxi.in', '_libs/algos_take_helper.pxi.in', '_libs/algos_rank_helper.pxi.in'], 'groupby': ['_libs/groupby_helper.pxi.in'], 'join': ['_libs/join_helper.pxi.in', '_libs/join_func_helper.pxi.in'], 'reshape': ['_libs/reshape_helper.pxi.in'], 'hashtable': ['_libs/hashtable_class_helper.pxi.in', '_libs/hashtable_func_helper.pxi.in'], 'index': ['_libs/index_class_helper.pxi.in'], 'sparse': ['_libs/sparse_op_helper.pxi.in'], 'interval': ['_libs/intervaltree.pxi.in']} _pxifiles = [] _pxi_dep = {} for module, files in _pxi_dep_template.items(): pxi_files = [pjoin('pandas', x) for x in files] _pxifiles.extend(pxi_files) _pxi_dep[module] = pxi_files class build_ext(_build_ext): def build_extensions(self): # if builing from c files, don't need to # generate template output if cython: for pxifile in _pxifiles: # build pxifiles first, template extension must be .pxi.in assert pxifile.endswith('.pxi.in') outfile = pxifile[:-3] if (os.path.exists(outfile) and os.stat(pxifile).st_mtime < os.stat(outfile).st_mtime): # if .pxi.in is not updated, no need to output .pxi continue with open(pxifile, "r") as f: tmpl = f.read() pyxcontent = tempita.sub(tmpl) with open(outfile, "w") as f: f.write(pyxcontent) numpy_incl = pkg_resources.resource_filename('numpy', 'core/include') for ext in self.extensions: if (hasattr(ext, 'include_dirs') and numpy_incl not in ext.include_dirs): ext.include_dirs.append(numpy_incl) _build_ext.build_extensions(self) DESCRIPTION = ("Powerful data structures for data analysis, time series," "and statistics") LONG_DESCRIPTION = """ **pandas** is a Python package providing fast, flexible, and expressive data structures designed to make working with structured (tabular, multidimensional, potentially heterogeneous) and time series data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, **real world** data analysis in Python. Additionally, it has the broader goal of becoming **the most powerful and flexible open source data analysis / manipulation tool available in any language**. It is already well on its way toward this goal. pandas is well suited for many different kinds of data: - Tabular data with heterogeneously-typed columns, as in an SQL table or Excel spreadsheet - Ordered and unordered (not necessarily fixed-frequency) time series data. - Arbitrary matrix data (homogeneously typed or heterogeneous) with row and column labels - Any other form of observational / statistical data sets. The data actually need not be labeled at all to be placed into a pandas data structure The two primary data structures of pandas, Series (1-dimensional) and DataFrame (2-dimensional), handle the vast majority of typical use cases in finance, statistics, social science, and many areas of engineering. For R users, DataFrame provides everything that R's ``data.frame`` provides and much more. pandas is built on top of `NumPy <http://www.numpy.org>`__ and is intended to integrate well within a scientific computing environment with many other 3rd party libraries. Here are just a few of the things that pandas does well: - Easy handling of **missing data** (represented as NaN) in floating point as well as non-floating point data - Size mutability: columns can be **inserted and deleted** from DataFrame and higher dimensional objects - Automatic and explicit **data alignment**: objects can be explicitly aligned to a set of labels, or the user can simply ignore the labels and let `Series`, `DataFrame`, etc. automatically align the data for you in computations - Powerful, flexible **group by** functionality to perform split-apply-combine operations on data sets, for both aggregating and transforming data - Make it **easy to convert** ragged, differently-indexed data in other Python and NumPy data structures into DataFrame objects - Intelligent label-based **slicing**, **fancy indexing**, and **subsetting** of large data sets - Intuitive **merging** and **joining** data sets - Flexible **reshaping** and pivoting of data sets - **Hierarchical** labeling of axes (possible to have multiple labels per tick) - Robust IO tools for loading data from **flat files** (CSV and delimited), Excel files, databases, and saving / loading data from the ultrafast **HDF5 format** - **Time series**-specific functionality: date range generation and frequency conversion, moving window statistics, moving window linear regressions, date shifting and lagging, etc. Many of these principles are here to address the shortcomings frequently experienced using other languages / scientific research environments. For data scientists, working with data is typically divided into multiple stages: munging and cleaning data, analyzing / modeling it, then organizing the results of the analysis into a form suitable for plotting or tabular display. pandas is the ideal tool for all of these tasks. """ DISTNAME = 'pandas' LICENSE = 'BSD' AUTHOR = "The PyData Development Team" EMAIL = "pydata@googlegroups.com" URL = "http://pandas.pydata.org" DOWNLOAD_URL = '' CLASSIFIERS = [ 'Development Status :: 5 - Production/Stable', 'Environment :: Console', 'Operating System :: OS Independent', 'Intended Audience :: Science/Research', 'Programming Language :: Python', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Cython', 'Topic :: Scientific/Engineering'] class CleanCommand(Command): """Custom distutils command to clean the .so and .pyc files.""" user_options = [("all", "a", "")] def initialize_options(self): self.all = True self._clean_me = [] self._clean_trees = [] base = pjoin('pandas', '_libs', 'src') dt = pjoin(base, 'datetime') src = base util = pjoin('pandas', 'util') parser = pjoin(base, 'parser') ujson_python = pjoin(base, 'ujson', 'python') ujson_lib = pjoin(base, 'ujson', 'lib') self._clean_exclude = [pjoin(dt, 'np_datetime.c'), pjoin(dt, 'np_datetime_strings.c'), pjoin(src, 'period_helper.c'), pjoin(parser, 'tokenizer.c'), pjoin(parser, 'io.c'), pjoin(ujson_python, 'ujson.c'), pjoin(ujson_python, 'objToJSON.c'), pjoin(ujson_python, 'JSONtoObj.c'), pjoin(ujson_lib, 'ultrajsonenc.c'), pjoin(ujson_lib, 'ultrajsondec.c'), pjoin(util, 'move.c'), ] for root, dirs, files in os.walk('pandas'): for f in files: filepath = pjoin(root, f) if filepath in self._clean_exclude: continue if os.path.splitext(f)[-1] in ('.pyc', '.so', '.o', '.pyo', '.pyd', '.c', '.orig'): self._clean_me.append(filepath) for d in dirs: if d == '__pycache__': self._clean_trees.append(pjoin(root, d)) # clean the generated pxi files for pxifile in _pxifiles: pxifile = pxifile.replace(".pxi.in", ".pxi") self._clean_me.append(pxifile) for d in ('build', 'dist'): if os.path.exists(d): self._clean_trees.append(d) def finalize_options(self): pass def run(self): for clean_me in self._clean_me: try: os.unlink(clean_me) except Exception: pass for clean_tree in self._clean_trees: try: shutil.rmtree(clean_tree) except Exception: pass # we need to inherit from the versioneer # class as it encodes the version info sdist_class = cmdclass['sdist'] class CheckSDist(sdist_class): """Custom sdist that ensures Cython has compiled all pyx files to c.""" _pyxfiles = ['pandas/_libs/lib.pyx', 'pandas/_libs/hashtable.pyx', 'pandas/_libs/tslib.pyx', 'pandas/_libs/index.pyx', 'pandas/_libs/algos.pyx', 'pandas/_libs/join.pyx', 'pandas/_libs/indexing.pyx', 'pandas/_libs/interval.pyx', 'pandas/_libs/hashing.pyx', 'pandas/_libs/missing.pyx', 'pandas/_libs/testing.pyx', 'pandas/_libs/window.pyx', 'pandas/_libs/skiplist.pyx', 'pandas/_libs/sparse.pyx', 'pandas/_libs/parsers.pyx', 'pandas/_libs/tslibs/ccalendar.pyx', 'pandas/_libs/tslibs/period.pyx', 'pandas/_libs/tslibs/strptime.pyx', 'pandas/_libs/tslibs/np_datetime.pyx', 'pandas/_libs/tslibs/timedeltas.pyx', 'pandas/_libs/tslibs/timestamps.pyx', 'pandas/_libs/tslibs/timezones.pyx', 'pandas/_libs/tslibs/conversion.pyx', 'pandas/_libs/tslibs/fields.pyx', 'pandas/_libs/tslibs/offsets.pyx', 'pandas/_libs/tslibs/frequencies.pyx', 'pandas/_libs/tslibs/resolution.pyx', 'pandas/_libs/tslibs/parsing.pyx', 'pandas/io/sas/sas.pyx'] def initialize_options(self): sdist_class.initialize_options(self) def run(self): if 'cython' in cmdclass: self.run_command('cython') else: for pyxfile in self._pyxfiles: cfile = pyxfile[:-3] + 'c' msg = ("C-source file '{source}' not found.\n" "Run 'setup.py cython' before sdist.".format( source=cfile)) assert os.path.isfile(cfile), msg sdist_class.run(self) class CheckingBuildExt(build_ext): """ Subclass build_ext to get clearer report if Cython is necessary. """ def check_cython_extensions(self, extensions): for ext in extensions: for src in ext.sources: if not os.path.exists(src): print("{}: -> [{}]".format(ext.name, ext.sources)) raise Exception("""Cython-generated file '{src}' not found. Cython is required to compile pandas from a development branch. Please install Cython or download a release package of pandas. """.format(src=src)) def build_extensions(self): self.check_cython_extensions(self.extensions) build_ext.build_extensions(self) class CythonCommand(build_ext): """Custom distutils command subclassed from Cython.Distutils.build_ext to compile pyx->c, and stop there. All this does is override the C-compile method build_extension() with a no-op.""" def build_extension(self, ext): pass class DummyBuildSrc(Command): """ numpy's build_src command interferes with Cython's build_ext. """ user_options = [] def initialize_options(self): self.py_modules_dict = {} def finalize_options(self): pass def run(self): pass cmdclass.update({'clean': CleanCommand, 'build': build}) try: from wheel.bdist_wheel import bdist_wheel class BdistWheel(bdist_wheel): def get_tag(self): tag = bdist_wheel.get_tag(self) repl = 'macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64' if tag[2] == 'macosx_10_6_intel': tag = (tag[0], tag[1], repl) return tag cmdclass['bdist_wheel'] = BdistWheel except ImportError: pass if cython: suffix = '.pyx' cmdclass['build_ext'] = CheckingBuildExt cmdclass['cython'] = CythonCommand else: suffix = '.c' cmdclass['build_src'] = DummyBuildSrc cmdclass['build_ext'] = CheckingBuildExt lib_depends = ['reduce', 'inference'] def srcpath(name=None, suffix='.pyx', subdir='src'): return pjoin('pandas', subdir, name + suffix) if suffix == '.pyx': lib_depends = [srcpath(f, suffix='.pyx', subdir='_libs/src') for f in lib_depends] lib_depends.append('pandas/_libs/src/util.pxd') else: lib_depends = [] plib_depends = [] common_include = ['pandas/_libs/src/klib', 'pandas/_libs/src'] def pxd(name): return os.path.abspath(pjoin('pandas', name + '.pxd')) # args to ignore warnings if is_platform_windows(): extra_compile_args = [] else: extra_compile_args = ['-Wno-unused-function'] lib_depends = lib_depends + ['pandas/_libs/src/numpy_helper.h', 'pandas/_libs/src/parse_helper.h', 'pandas/_libs/src/compat_helper.h'] np_datetime_headers = ['pandas/_libs/src/datetime/np_datetime.h', 'pandas/_libs/src/datetime/np_datetime_strings.h'] np_datetime_sources = ['pandas/_libs/src/datetime/np_datetime.c', 'pandas/_libs/src/datetime/np_datetime_strings.c'] tseries_depends = np_datetime_headers + ['pandas/_libs/tslibs/np_datetime.pxd'] # some linux distros require it libraries = ['m'] if not is_platform_windows() else [] ext_data = { '_libs.algos': { 'pyxfile': '_libs/algos', 'pxdfiles': ['_libs/src/util', '_libs/algos', '_libs/hashtable'], 'depends': _pxi_dep['algos']}, '_libs.groupby': { 'pyxfile': '_libs/groupby', 'pxdfiles': ['_libs/src/util', '_libs/algos'], 'depends': _pxi_dep['groupby']}, '_libs.hashing': { 'pyxfile': '_libs/hashing'}, '_libs.hashtable': { 'pyxfile': '_libs/hashtable', 'pxdfiles': ['_libs/hashtable', '_libs/missing', '_libs/khash'], 'depends': (['pandas/_libs/src/klib/khash_python.h'] + _pxi_dep['hashtable'])}, '_libs.index': { 'pyxfile': '_libs/index', 'pxdfiles': ['_libs/src/util', '_libs/hashtable'], 'depends': _pxi_dep['index'], 'sources': np_datetime_sources}, '_libs.indexing': { 'pyxfile': '_libs/indexing'}, '_libs.interval': { 'pyxfile': '_libs/interval', 'pxdfiles': ['_libs/hashtable'], 'depends': _pxi_dep['interval']}, '_libs.join': { 'pyxfile': '_libs/join', 'pxdfiles': ['_libs/src/util', '_libs/hashtable'], 'depends': _pxi_dep['join']}, '_libs.lib': { 'pyxfile': '_libs/lib', 'pxdfiles': ['_libs/src/util', '_libs/missing', '_libs/tslibs/conversion'], 'depends': lib_depends + tseries_depends}, '_libs.missing': { 'pyxfile': '_libs/missing', 'pxdfiles': ['_libs/src/util'], 'depends': tseries_depends}, '_libs.parsers': { 'pyxfile': '_libs/parsers', 'depends': ['pandas/_libs/src/parser/tokenizer.h', 'pandas/_libs/src/parser/io.h', 'pandas/_libs/src/numpy_helper.h'], 'sources': ['pandas/_libs/src/parser/tokenizer.c', 'pandas/_libs/src/parser/io.c']}, '_libs.tslibs.period': { 'pyxfile': '_libs/tslibs/period', 'pxdfiles': ['_libs/src/util', '_libs/lib', '_libs/tslibs/timedeltas', '_libs/tslibs/timezones', '_libs/tslibs/nattype'], 'depends': tseries_depends + ['pandas/_libs/src/period_helper.h'], 'sources': np_datetime_sources + ['pandas/_libs/src/period_helper.c']}, '_libs.properties': { 'pyxfile': '_libs/properties', 'include': []}, '_libs.reshape': { 'pyxfile': '_libs/reshape', 'depends': _pxi_dep['reshape']}, '_libs.skiplist': { 'pyxfile': '_libs/skiplist', 'depends': ['pandas/_libs/src/skiplist.h']}, '_libs.sparse': { 'pyxfile': '_libs/sparse', 'depends': _pxi_dep['sparse']}, '_libs.tslib': { 'pyxfile': '_libs/tslib', 'pxdfiles': ['_libs/src/util', '_libs/tslibs/conversion', '_libs/tslibs/timedeltas', '_libs/tslibs/timestamps', '_libs/tslibs/timezones', '_libs/tslibs/nattype'], 'depends': tseries_depends, 'sources': np_datetime_sources}, '_libs.tslibs.ccalendar': { 'pyxfile': '_libs/tslibs/ccalendar'}, '_libs.tslibs.conversion': { 'pyxfile': '_libs/tslibs/conversion', 'pxdfiles': ['_libs/src/util', '_libs/tslibs/nattype', '_libs/tslibs/timezones', '_libs/tslibs/timedeltas'], 'depends': tseries_depends, 'sources': np_datetime_sources}, '_libs.tslibs.fields': { 'pyxfile': '_libs/tslibs/fields', 'pxdfiles': ['_libs/tslibs/ccalendar', '_libs/tslibs/nattype'], 'depends': tseries_depends, 'sources': np_datetime_sources}, '_libs.tslibs.frequencies': { 'pyxfile': '_libs/tslibs/frequencies', 'pxdfiles': ['_libs/src/util']}, '_libs.tslibs.nattype': { 'pyxfile': '_libs/tslibs/nattype', 'pxdfiles': ['_libs/src/util']}, '_libs.tslibs.np_datetime': { 'pyxfile': '_libs/tslibs/np_datetime', 'depends': np_datetime_headers, 'sources': np_datetime_sources}, '_libs.tslibs.offsets': { 'pyxfile': '_libs/tslibs/offsets', 'pxdfiles': ['_libs/src/util', '_libs/tslibs/conversion', '_libs/tslibs/frequencies', '_libs/tslibs/nattype'], 'depends': tseries_depends, 'sources': np_datetime_sources}, '_libs.tslibs.parsing': { 'pyxfile': '_libs/tslibs/parsing', 'pxdfiles': ['_libs/src/util']}, '_libs.tslibs.resolution': { 'pyxfile': '_libs/tslibs/resolution', 'pxdfiles': ['_libs/src/util', '_libs/khash', '_libs/tslibs/frequencies', '_libs/tslibs/timezones'], 'depends': tseries_depends, 'sources': np_datetime_sources}, '_libs.tslibs.strptime': { 'pyxfile': '_libs/tslibs/strptime', 'pxdfiles': ['_libs/src/util', '_libs/tslibs/nattype'], 'depends': tseries_depends, 'sources': np_datetime_sources}, '_libs.tslibs.timedeltas': { 'pyxfile': '_libs/tslibs/timedeltas', 'pxdfiles': ['_libs/src/util', '_libs/tslibs/nattype'], 'depends': np_datetime_headers, 'sources': np_datetime_sources}, '_libs.tslibs.timestamps': { 'pyxfile': '_libs/tslibs/timestamps', 'pxdfiles': ['_libs/src/util', '_libs/tslibs/ccalendar', '_libs/tslibs/conversion', '_libs/tslibs/nattype', '_libs/tslibs/timedeltas', '_libs/tslibs/timezones'], 'depends': tseries_depends, 'sources': np_datetime_sources}, '_libs.tslibs.timezones': { 'pyxfile': '_libs/tslibs/timezones', 'pxdfiles': ['_libs/src/util']}, '_libs.testing': { 'pyxfile': '_libs/testing'}, '_libs.window': { 'pyxfile': '_libs/window', 'pxdfiles': ['_libs/skiplist', '_libs/src/util']}, 'io.sas._sas': { 'pyxfile': 'io/sas/sas'}} extensions = [] for name, data in ext_data.items(): sources = [srcpath(data['pyxfile'], suffix=suffix, subdir='')] pxds = [pxd(x) for x in data.get('pxdfiles', [])] if suffix == '.pyx' and pxds: sources.extend(pxds) sources.extend(data.get('sources', [])) include = data.get('include', common_include) obj = Extension('pandas.{name}'.format(name=name), sources=sources, depends=data.get('depends', []), include_dirs=include, extra_compile_args=extra_compile_args) extensions.append(obj) # ---------------------------------------------------------------------- # msgpack if sys.byteorder == 'big': macros = [('__BIG_ENDIAN__', '1')] else: macros = [('__LITTLE_ENDIAN__', '1')] msgpack_include = ['pandas/_libs/src/msgpack'] + common_include msgpack_suffix = suffix if suffix == '.pyx' else '.cpp' unpacker_depends = ['pandas/_libs/src/msgpack/unpack.h', 'pandas/_libs/src/msgpack/unpack_define.h', 'pandas/_libs/src/msgpack/unpack_template.h'] packer_ext = Extension('pandas.io.msgpack._packer', depends=['pandas/_libs/src/msgpack/pack.h', 'pandas/_libs/src/msgpack/pack_template.h'], sources=[srcpath('_packer', suffix=msgpack_suffix, subdir='io/msgpack')], language='c++', include_dirs=msgpack_include, define_macros=macros, extra_compile_args=extra_compile_args) unpacker_ext = Extension('pandas.io.msgpack._unpacker', depends=unpacker_depends, sources=[srcpath('_unpacker', suffix=msgpack_suffix, subdir='io/msgpack')], language='c++', include_dirs=msgpack_include, define_macros=macros, extra_compile_args=extra_compile_args) extensions.append(packer_ext) extensions.append(unpacker_ext) # ---------------------------------------------------------------------- # ujson if suffix == '.pyx': # undo dumb setuptools bug clobbering .pyx sources back to .c for ext in extensions: if ext.sources[0].endswith(('.c', '.cpp')): root, _ = os.path.splitext(ext.sources[0]) ext.sources[0] = root + suffix ujson_ext = Extension('pandas._libs.json', depends=['pandas/_libs/src/ujson/lib/ultrajson.h', 'pandas/_libs/src/numpy_helper.h'], sources=(['pandas/_libs/src/ujson/python/ujson.c', 'pandas/_libs/src/ujson/python/objToJSON.c', 'pandas/_libs/src/ujson/python/JSONtoObj.c', 'pandas/_libs/src/ujson/lib/ultrajsonenc.c', 'pandas/_libs/src/ujson/lib/ultrajsondec.c'] + np_datetime_sources), include_dirs=(['pandas/_libs/src/ujson/python', 'pandas/_libs/src/ujson/lib', 'pandas/_libs/src/datetime'] + common_include), extra_compile_args=(['-D_GNU_SOURCE'] + extra_compile_args)) extensions.append(ujson_ext) # ---------------------------------------------------------------------- # util # extension for pseudo-safely moving bytes into mutable buffers _move_ext = Extension('pandas.util._move', depends=[], sources=['pandas/util/move.c']) extensions.append(_move_ext) # The build cache system does string matching below this point. # if you change something, be careful. setup(name=DISTNAME, maintainer=AUTHOR, version=versioneer.get_version(), packages=find_packages(include=['pandas', 'pandas.*']), package_data={'': ['data/*', 'templates/*'], 'pandas.tests.io': ['data/legacy_hdf/*.h5', 'data/legacy_pickle/*/*.pickle', 'data/legacy_msgpack/*/*.msgpack', 'data/html_encoding/*.html']}, ext_modules=extensions, maintainer_email=EMAIL, description=DESCRIPTION, license=LICENSE, cmdclass=cmdclass, url=URL, download_url=DOWNLOAD_URL, long_description=LONG_DESCRIPTION, classifiers=CLASSIFIERS, platforms='any', **setuptools_kwargs)