-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy path1008. Construct Binary Search Tree from Preorder Traversal.java
executable file
·76 lines (57 loc) · 1.9 KB
/
1008. Construct Binary Search Tree from Preorder Traversal.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
M
tags: DFS, Tree
time: O(n)
space: O(n)
#### Method1: Top Down DFS
- This approach highly relies on the preorder rules
- we can use validation rules to navigate throug hteh preorder array
- use a global index
- time: O(n)
```
/**
Return the root node of a binary search tree that matches the given preorder traversal.
(Recall that a binary search tree is a binary tree where for every node, any descendant of node.left has a value < node.val, and any descendant of node.right has a value > node.val. Also recall that a preorder traversal displays the value of the node first, then traverses node.left, then traverses node.right.)
Example 1:
Input: [8,5,1,7,10,12]
Output: [8,5,10,1,7,null,12]
Note:
1 <= preorder.length <= 100
The values of preorder are distinct.
*/
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
/*
Method1: Top Down O(n)
- Use preorder to pick one index at a time
*/
class Solution {
int index = 0;
public TreeNode bstFromPreorder(int[] preorder) {
if (preorder == null || preorder.length == 0) return null;
return dfs(preorder, Integer.MIN_VALUE, Integer.MAX_VALUE);
}
private TreeNode dfs(int[] preorder, int min, int max) {
if (index == preorder.length) return null;
int val = preorder[index];
if (val <= min || val >= max) return null;
index++;
TreeNode node = new TreeNode(val);
node.left = dfs(preorder, min, val);
node.right = dfs(preorder, val, max);
return node;
}
}
/*
Alternatives tried: use start as root; in remaining array, search for mid point such that
- nums[mid] < root.val < nums[mid + 1]
- we can split the array into 2 parts and build sub tree accordingly
- time: O(n * logn) since it requires search. Not prefered
*/
```