-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathKth Largest Element in an Array.java
executable file
·180 lines (149 loc) · 5 KB
/
Kth Largest Element in an Array.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
M
1533137926
tags: Divide and Conquer, Heap, PriorityQueue, MinHeap, Quick Sort
kth largest in array
#### PriorityQueue, MinHeap
- Need to maintain k large elements, where the smallest will be compared and dropped if applicable:
- Maintain k elements with min value: consider using minHeap
- add k base elements first
- Maintain MinHeap: only allow larger elements (which will squzze out the min value)
- Remove peek() of queue if over size
- O(nlogk)
#### Quick Sort
- 用Quick Sort 里面partion的一部分
- sort结束后是ascending的, 那么 n - k 就是第k大.
- partion的结果是那个low, 去找 low==nums.size() - k, 也就是倒数第K个。
- 没找到继续partion recursively.
- sort的过程是排一个从小到大的list. (同样的代码还可以好xth smallest,mid变成x就好)
- Steps:
- 每个iteration, 找一个pivot,然后从low,和high都和pivot作比较。
- 找到一个low>pivot, high<pivot, 也就可以swap了。
- 得到的low就是当下的partion point了
- Overall O(nlogN), average O(n) for this problem.
```
/**
Find the kth largest element in an unsorted array.
Note that it is the kth largest element in the sorted order, not the kth distinct element.
Example 1:
Input: [3,2,1,5,6,4] and k = 2
Output: 5
Example 2:
Input: [3,2,3,1,2,4,5,5,6] and k = 4
Output: 4
Note:
You may assume k is always valid, 1 ≤ k ≤ array's length.
*/
/*
sort O(nlogn). Better O(n)
use a min-heap with size k, so min item will always be at top to be removed O(logk)
Overall runtime O(nlogk)
*/
class Solution {
public int findKthLargest(int[] nums, int k) {
if (nums == null || nums.length == 0) return -1;
PriorityQueue<Integer> queue = new PriorityQueue<>(); // min-heap
for (int i = 0; i < nums.length; i++) {
if (i < k || nums[i] > queue.peek()) queue.offer(nums[i]);
if (queue.size() > k) queue.poll();
}
return queue.poll();
}
}
// Quick sort/ partition
// Partition to return the `low` index, which should match targetIndex.
class Solution {
public int findKthLargest(int[] nums, int k) {
if (nums == null || nums.length == 0) return -1;
int n = nums.length;
return partition(nums, 0, n - 1, n - k);
}
private int partition (int[] nums, int start, int end, int targetIndex) {
// define low/high
int pivot = end;
int low = start, high = end, num = nums[pivot];
// move pointer and swap
while (low < high) {
while (low < high && nums[low] < num) {
low++;
}
while (low < high && nums[high] >= num) {
high--;
}
swap(nums, low, high);
}
swap(nums, low, pivot);
// compare if low == targetIndex; or recursively partition to find targetIndex
if (low == targetIndex) {
return nums[low];
} else if (low < targetIndex) {
return partition(nums, low + 1, end, targetIndex);
} else {
return partition(nums, start, low - 1, targetIndex);
}
}
private void swap(int[] nums, int x, int y) {
int temp = nums[x];
nums[x] = nums[y];
nums[y] = temp;
}
}
/*
LintCode
Find K-th largest element in an array.
Example
In array [9,3,2,4,8], the 3rd largest element is 4
In array [1,2,3,4,5], the 1st largest element is 5,
2nd largest element is 4, 3rd largest element is 3 and etc.
Note
You can swap elements in the array
Challenge
O(n) time, O(1) space
Tags Expand
Quick Sort Sort
*/
/*
Thoughts:
Almost the same as the Median problem:
the only difference is, this one is not looking for the middle point, but for the last kth element.
Using the same quick sort code with minor modifications, and we can solve this problem.
*/
class Solution {
//param k : description of k
//param numbers : array of numbers
//return: description of return
public int kthLargestElement(int k, ArrayList<Integer> nums) {
if (nums == null || nums.size() == 0) {
return 0;
}
return helper(nums, 0, nums.size() - 1, nums.size() - k);
}
public void swap( ArrayList<Integer>nums, int x, int y){
int temp = nums.get(x);
nums.set(x, nums.get(y));
nums.set(y, temp);
}
public int helper( ArrayList<Integer> nums, int start, int end, int mid) {
int pivot = end;
int num = nums.get(pivot);
int low = start;
int high = end;
while (low < high) {
while(low < high && nums.get(low) < num) {
low++;
}
while(low < high && nums.get(high) >= num) {
high--;
}
swap(nums, low, high);
}
swap(nums, low, pivot);
if (low == mid) {
return nums.get(low);
} else if (low < mid) {
return helper(nums, low + 1, end, mid);
} else {
return helper(nums, start, low - 1, mid);
}
}
};
```