-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathNumber Of Corner Rectangles.java
executable file
·125 lines (95 loc) · 3.33 KB
/
Number Of Corner Rectangles.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
M
1531465969
tags: DP, Math
具体看题目: count # of valid rectangles (four corner are 1) in a grid[][].
#### basic thinking + Math
- Fix two rows and count matching columns
- Calculate number rectangles with `combination` concept:
- total number of combinations of pick 2 points randomly: count * (count - 1) / 2
#### DP
- TODO. HOW?
#### Brutle
- O(m^2 * n^2), times out
```
/*
Given a grid where each entry is only 0 or 1, find the number of corner rectangles.
A corner rectangle is 4 distinct 1s on the grid that form an axis-aligned rectangle.
Note that only the corners need to have the value 1. Also, all four 1s used must be distinct.
Example 1:
Input: grid =
[[1, 0, 0, 1, 0],
[0, 0, 1, 0, 1],
[0, 0, 0, 1, 0],
[1, 0, 1, 0, 1]]
Output: 1
Explanation: There is only one corner rectangle, with corners grid[1][2], grid[1][4], grid[3][2], grid[3][4].
Example 2:
Input: grid =
[[1, 1, 1],
[1, 1, 1],
[1, 1, 1]]
Output: 9
Explanation: There are four 2x2 rectangles, four 2x3 and 3x2 rectangles, and one 3x3 rectangle.
Example 3:
Input: grid =
[[1, 1, 1, 1]]
Output: 0
Explanation: Rectangles must have four distinct corners.
Note:
The number of rows and columns of grid will each be in the range [1, 200].
Each grid[i][j] will be either 0 or 1.
The number of 1s in the grid will be at most 6000.
*/
// O(M^2 * N), math: Combination concept
class Solution {
public int countCornerRectangles(int[][] grid) {
int rst = 0;
if (validate(grid)) return rst;
int m = grid.length, n = grid[0].length;
// find 2 rows O(M^2), and pick columns
for (int i = 0; i < m - 1; i++) {
for (int j = i + 1; j < m; j++) {
int count = 0;
for (int k = 0; k < n; k++) {
if (grid[i][k] == 1 && grid[j][k] == 1) count++;
}
if (count > 0) rst += count * (count - 1) / 2; // total # of combination of 2 items: n(n-1)/2
}
}
return rst;
}
private boolean validate(int[][] grid) {
return grid == null || grid.length == 0 || grid[0] == null || grid[0].length == 0;
}
}
/*
DP. TODO
If fixing a starting point A(0,0), the problem can be reduced to a dp problem
dp[i][j] represents the sum of rectangle from A(0,0) point to (i,j)
https://leetcode.com/problems/number-of-corner-rectangles/discuss/110200/Summary-of-three-solutions-based-on-three-different-ideas
*/
// Brutle, timesout
class Solution {
public int countCornerRectangles(int[][] grid) {
int rst = 0;
if (validate(grid)) return rst;
int m = grid.length, n = grid[0].length;
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) { // grid[i][j], starting point
for (int h = i + 1; h < m; h++) { // pick right-end corner
for (int k = j + 1; k < n; k++) {
rst += validateRect(grid, i, j, h, k) ? 1 : 0;
}
}
}
}
return rst;
}
private boolean validateRect(int[][] grid, int i, int j, int h, int k) {
return grid[i][j] == 1 && grid[h][k] == 1 && grid[i][k] == 1 && grid[h][j] == 1;
}
private boolean validate(int[][] grid) {
return grid == null || grid.length == 0 || grid[0] == null || grid[0].length == 0;
}
}
```