forked from fitzgen/dodrio
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdiff.rs
1125 lines (1039 loc) · 36.5 KB
/
diff.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
use crate::{
cached_set::{CacheId, CachedSet},
change_list::ChangeListBuilder,
events::EventsRegistry,
node::{Attribute, ElementNode, Listener, Node, NodeKind, TextNode},
};
use fxhash::{FxHashMap, FxHashSet};
use std::cmp::Ordering;
use std::u32;
use wasm_bindgen::UnwrapThrowExt;
// Diff the `old` node with the `new` node. Emits instructions to modify a
// physical DOM node that reflects `old` into something that reflects `new`.
//
// Upon entry to this function, the physical DOM node must be on the top of the
// change list stack:
//
// [... node]
//
// The change list stack is in the same state when this function exits.
pub(crate) fn diff(
cached_set: &CachedSet,
change_list: &mut ChangeListBuilder,
registry: &mut EventsRegistry,
old: &Node,
new: &Node,
cached_roots: &mut FxHashSet<CacheId>,
) {
match (&new.kind, &old.kind) {
(
&NodeKind::Text(TextNode { text: new_text }),
&NodeKind::Text(TextNode { text: old_text }),
) => {
if new_text != old_text {
change_list.commit_traversal();
change_list.set_text(new_text);
}
}
(&NodeKind::Text(_), &NodeKind::Element(_)) => {
change_list.commit_traversal();
create(cached_set, change_list, registry, new, cached_roots);
registry.remove_subtree(&old);
change_list.replace_with();
}
(&NodeKind::Element(_), &NodeKind::Text(_)) => {
change_list.commit_traversal();
create(cached_set, change_list, registry, new, cached_roots);
// Note: text nodes cannot have event listeners, so we don't need to
// remove the old node's listeners from our registry her.
change_list.replace_with();
}
(
&NodeKind::Element(ElementNode {
key: _,
tag_name: new_tag_name,
listeners: new_listeners,
attributes: new_attributes,
children: new_children,
namespace: new_namespace,
}),
&NodeKind::Element(ElementNode {
key: _,
tag_name: old_tag_name,
listeners: old_listeners,
attributes: old_attributes,
children: old_children,
namespace: old_namespace,
}),
) => {
if new_tag_name != old_tag_name || new_namespace != old_namespace {
change_list.commit_traversal();
create(cached_set, change_list, registry, new, cached_roots);
registry.remove_subtree(&old);
change_list.replace_with();
return;
}
diff_listeners(change_list, registry, old_listeners, new_listeners);
diff_attributes(change_list, old_attributes, new_attributes, new_namespace.is_some());
diff_children(
cached_set,
change_list,
registry,
old_children,
new_children,
cached_roots,
);
}
// Both the new and old nodes are cached.
(&NodeKind::Cached(ref new), &NodeKind::Cached(ref old)) => {
cached_roots.insert(new.id);
if new.id == old.id {
// This is the same cached node, so nothing has changed!
return;
}
let (new, new_template) = cached_set.get(new.id);
let (old, old_template) = cached_set.get(old.id);
if new_template == old_template {
// If they are both using the same template, then just diff the
// subtrees.
diff(cached_set, change_list, registry, old, new, cached_roots);
} else {
// Otherwise, they are probably different enough that
// re-constructing the subtree from scratch should be faster.
// This doubly holds true if we have a new template.
change_list.commit_traversal();
create_and_replace(
cached_set,
change_list,
registry,
new_template,
old,
new,
cached_roots,
);
}
}
// New cached node when the old node was not cached. In this scenario,
// we assume that they are pretty different, and it isn't worth diffing
// the subtrees, so we just create the new cached node afresh.
(&NodeKind::Cached(ref c), _) => {
change_list.commit_traversal();
cached_roots.insert(c.id);
let (new, new_template) = cached_set.get(c.id);
create_and_replace(
cached_set,
change_list,
registry,
new_template,
old,
new,
cached_roots,
);
}
// Old cached node and new non-cached node. Again, assume that they are
// probably pretty different and create the new non-cached node afresh.
(_, &NodeKind::Cached(_)) => {
change_list.commit_traversal();
create(cached_set, change_list, registry, new, cached_roots);
registry.remove_subtree(&old);
change_list.replace_with();
}
}
}
// Diff event listeners between `old` and `new`.
//
// The listeners' node must be on top of the change list stack:
//
// [... node]
//
// The change list stack is left unchanged.
fn diff_listeners(
change_list: &mut ChangeListBuilder,
registry: &mut EventsRegistry,
old: &[Listener],
new: &[Listener],
) {
if !old.is_empty() || !new.is_empty() {
change_list.commit_traversal();
}
'outer1: for new_l in new {
unsafe {
// Safety relies on removing `new_l` from the registry manually at
// the end of its lifetime. This happens below in the `'outer2`
// loop, and elsewhere in diffing when removing old dom trees.
registry.add(new_l);
}
for old_l in old {
if new_l.event == old_l.event {
change_list.update_event_listener(new_l);
continue 'outer1;
}
}
change_list.new_event_listener(new_l);
}
'outer2: for old_l in old {
registry.remove(old_l);
for new_l in new {
if new_l.event == old_l.event {
continue 'outer2;
}
}
change_list.remove_event_listener(old_l.event);
}
}
// Diff a node's attributes.
//
// The attributes' node must be on top of the change list stack:
//
// [... node]
//
// The change list stack is left unchanged.
fn diff_attributes(change_list: &mut ChangeListBuilder, old: &[Attribute], new: &[Attribute], is_namespaced: bool) {
// Do O(n^2) passes to add/update and remove attributes, since
// there are almost always very few attributes.
'outer: for new_attr in new {
if new_attr.is_volatile() {
change_list.commit_traversal();
change_list.set_attribute(new_attr.name, new_attr.value, is_namespaced);
} else {
for old_attr in old {
if old_attr.name == new_attr.name {
if old_attr.value != new_attr.value {
change_list.commit_traversal();
change_list.set_attribute(new_attr.name, new_attr.value, is_namespaced);
}
continue 'outer;
}
}
change_list.commit_traversal();
change_list.set_attribute(new_attr.name, new_attr.value, is_namespaced);
}
}
'outer2: for old_attr in old {
for new_attr in new {
if old_attr.name == new_attr.name {
continue 'outer2;
}
}
change_list.commit_traversal();
change_list.remove_attribute(old_attr.name);
}
}
// Diff the given set of old and new children.
//
// The parent must be on top of the change list stack when this function is
// entered:
//
// [... parent]
//
// the change list stack is in the same state when this function returns.
fn diff_children(
cached_set: &CachedSet,
change_list: &mut ChangeListBuilder,
registry: &mut EventsRegistry,
old: &[Node],
new: &[Node],
cached_roots: &mut FxHashSet<CacheId>,
) {
if new.is_empty() {
if !old.is_empty() {
change_list.commit_traversal();
remove_all_children(change_list, registry, old);
}
return;
}
if new.len() == 1 {
match (old.first(), &new[0]) {
(
Some(&Node {
kind: NodeKind::Text(TextNode { text: old_text }),
}),
&Node {
kind: NodeKind::Text(TextNode { text: new_text }),
},
) if old_text == new_text => {
// Don't take this fast path...
}
(
_,
&Node {
kind: NodeKind::Text(TextNode { text }),
},
) => {
change_list.commit_traversal();
change_list.set_text(text);
for o in old {
registry.remove_subtree(o);
}
return;
}
(_, _) => {}
}
}
if old.is_empty() {
if !new.is_empty() {
change_list.commit_traversal();
create_and_append_children(cached_set, change_list, registry, new, cached_roots);
}
return;
}
let new_is_keyed = new[0].key().is_some();
let old_is_keyed = old[0].key().is_some();
debug_assert!(
new.iter().all(|n| n.key().is_some() == new_is_keyed),
"all siblings must be keyed or all siblings must be non-keyed"
);
debug_assert!(
old.iter().all(|o| o.key().is_some() == old_is_keyed),
"all siblings must be keyed or all siblings must be non-keyed"
);
if new_is_keyed && old_is_keyed {
let t = change_list.next_temporary();
diff_keyed_children(cached_set, change_list, registry, old, new, cached_roots);
change_list.set_next_temporary(t);
} else {
diff_non_keyed_children(cached_set, change_list, registry, old, new, cached_roots);
}
}
// Diffing "keyed" children.
//
// With keyed children, we care about whether we delete, move, or create nodes
// versus mutate existing nodes in place. Presumably there is some sort of CSS
// transition animation that makes the virtual DOM diffing algorithm
// observable. By specifying keys for nodes, we know which virtual DOM nodes
// must reuse (or not reuse) the same physical DOM nodes.
//
// This is loosely based on Inferno's keyed patching implementation. However, we
// have to modify the algorithm since we are compiling the diff down into change
// list instructions that will be executed later, rather than applying the
// changes to the DOM directly as we compare virtual DOMs.
//
// https://github.com/infernojs/inferno/blob/36fd96/packages/inferno/src/DOM/patching.ts#L530-L739
//
// When entering this function, the parent must be on top of the change list
// stack:
//
// [... parent]
//
// Upon exiting, the change list stack is in the same state.
fn diff_keyed_children(
cached_set: &CachedSet,
change_list: &mut ChangeListBuilder,
registry: &mut EventsRegistry,
old: &[Node],
new: &[Node],
cached_roots: &mut FxHashSet<CacheId>,
) {
if cfg!(debug_assertions) {
let mut keys = FxHashSet::default();
let mut assert_unique_keys = |children: &[Node]| {
keys.clear();
for child in children {
let key = child.key();
debug_assert!(
key.is_some(),
"if any sibling is keyed, all siblings must be keyed"
);
keys.insert(key);
}
debug_assert_eq!(
children.len(),
keys.len(),
"keyed siblings must each have a unique key"
);
};
assert_unique_keys(old);
assert_unique_keys(new);
}
// First up, we diff all the nodes with the same key at the beginning of the
// children.
//
// `shared_prefix_count` is the count of how many nodes at the start of
// `new` and `old` share the same keys.
let shared_prefix_count =
match diff_keyed_prefix(cached_set, change_list, registry, old, new, cached_roots) {
KeyedPrefixResult::Finished => return,
KeyedPrefixResult::MoreWorkToDo(count) => count,
};
// Next, we find out how many of the nodes at the end of the children have
// the same key. We do _not_ diff them yet, since we want to emit the change
// list instructions such that they can be applied in a single pass over the
// DOM. Instead, we just save this information for later.
//
// `shared_suffix_count` is the count of how many nodes at the end of `new`
// and `old` share the same keys.
let shared_suffix_count = old[shared_prefix_count..]
.iter()
.rev()
.zip(new[shared_prefix_count..].iter().rev())
.take_while(|&(old, new)| old.key() == new.key())
.count();
let old_shared_suffix_start = old.len() - shared_suffix_count;
let new_shared_suffix_start = new.len() - shared_suffix_count;
// Ok, we now hopefully have a smaller range of children in the middle
// within which to re-order nodes with the same keys, remove old nodes with
// now-unused keys, and create new nodes with fresh keys.
diff_keyed_middle(
cached_set,
change_list,
registry,
&old[shared_prefix_count..old_shared_suffix_start],
&new[shared_prefix_count..new_shared_suffix_start],
cached_roots,
shared_prefix_count,
shared_suffix_count,
old_shared_suffix_start,
);
// Finally, diff the nodes at the end of `old` and `new` that share keys.
let old_suffix = &old[old_shared_suffix_start..];
let new_suffix = &new[new_shared_suffix_start..];
debug_assert_eq!(old_suffix.len(), new_suffix.len());
if !old_suffix.is_empty() {
diff_keyed_suffix(
cached_set,
change_list,
registry,
old_suffix,
new_suffix,
cached_roots,
new_shared_suffix_start,
);
}
}
enum KeyedPrefixResult {
// Fast path: we finished diffing all the children just by looking at the
// prefix of shared keys!
Finished,
// There is more diffing work to do. Here is a count of how many children at
// the beginning of `new` and `old` we already processed.
MoreWorkToDo(usize),
}
// Diff the prefix of children in `new` and `old` that share the same keys in
// the same order.
//
// Upon entry of this function, the change list stack must be:
//
// [... parent]
//
// Upon exit, the change list stack is the same.
fn diff_keyed_prefix(
cached_set: &CachedSet,
change_list: &mut ChangeListBuilder,
registry: &mut EventsRegistry,
old: &[Node],
new: &[Node],
cached_roots: &mut FxHashSet<CacheId>,
) -> KeyedPrefixResult {
change_list.go_down();
let mut shared_prefix_count = 0;
for (i, (old, new)) in old.iter().zip(new.iter()).enumerate() {
if old.key() != new.key() {
break;
}
change_list.go_to_sibling(i);
diff(cached_set, change_list, registry, old, new, cached_roots);
shared_prefix_count += 1;
}
// If that was all of the old children, then create and append the remaining
// new children and we're finished.
if shared_prefix_count == old.len() {
change_list.go_up();
change_list.commit_traversal();
create_and_append_children(
cached_set,
change_list,
registry,
&new[shared_prefix_count..],
cached_roots,
);
return KeyedPrefixResult::Finished;
}
// And if that was all of the new children, then remove all of the remaining
// old children and we're finished.
if shared_prefix_count == new.len() {
change_list.go_to_sibling(shared_prefix_count);
change_list.commit_traversal();
remove_self_and_next_siblings(change_list, registry, &old[shared_prefix_count..]);
return KeyedPrefixResult::Finished;
}
change_list.go_up();
KeyedPrefixResult::MoreWorkToDo(shared_prefix_count)
}
// The most-general, expensive code path for keyed children diffing.
//
// We find the longest subsequence within `old` of children that are relatively
// ordered the same way in `new` (via finding a longest-increasing-subsequence
// of the old child's index within `new`). The children that are elements of
// this subsequence will remain in place, minimizing the number of DOM moves we
// will have to do.
//
// Upon entry to this function, the change list stack must be:
//
// [... parent]
//
// Upon exit from this function, it will be restored to that same state.
fn diff_keyed_middle(
cached_set: &CachedSet,
change_list: &mut ChangeListBuilder,
registry: &mut EventsRegistry,
old: &[Node],
mut new: &[Node],
cached_roots: &mut FxHashSet<CacheId>,
shared_prefix_count: usize,
shared_suffix_count: usize,
old_shared_suffix_start: usize,
) {
// Should have already diffed the shared-key prefixes and suffixes.
debug_assert_ne!(new.first().map(|n| n.key()), old.first().map(|o| o.key()));
debug_assert_ne!(new.last().map(|n| n.key()), old.last().map(|o| o.key()));
// The algorithm below relies upon using `u32::MAX` as a sentinel
// value, so if we have that many new nodes, it won't work. This
// check is a bit academic (hence only enabled in debug), since
// wasm32 doesn't have enough address space to hold that many nodes
// in memory.
debug_assert!(new.len() < u32::MAX as usize);
// Map from each `old` node's key to its index within `old`.
let mut old_key_to_old_index = FxHashMap::default();
old_key_to_old_index.reserve(old.len());
old_key_to_old_index.extend(old.iter().enumerate().map(|(i, o)| (o.key(), i)));
// The set of shared keys between `new` and `old`.
let mut shared_keys = FxHashSet::default();
// Map from each index in `new` to the index of the node in `old` that
// has the same key.
let mut new_index_to_old_index = Vec::with_capacity(new.len());
new_index_to_old_index.extend(new.iter().map(|n| {
let key = n.key();
if let Some(&i) = old_key_to_old_index.get(&key) {
shared_keys.insert(key);
i
} else {
u32::MAX as usize
}
}));
// If none of the old keys are reused by the new children, then we
// remove all the remaining old children and create the new children
// afresh.
if shared_suffix_count == 0 && shared_keys.is_empty() {
if shared_prefix_count == 0 {
change_list.commit_traversal();
remove_all_children(change_list, registry, old);
} else {
change_list.go_down_to_child(shared_prefix_count);
change_list.commit_traversal();
remove_self_and_next_siblings(change_list, registry, &old[shared_prefix_count..]);
}
create_and_append_children(cached_set, change_list, registry, new, cached_roots);
return;
}
// Save each of the old children whose keys are reused in the new
// children.
let mut old_index_to_temp = vec![u32::MAX; old.len()];
let mut start = 0;
loop {
let end = (start..old.len())
.find(|&i| {
let key = old[i].key();
!shared_keys.contains(&key)
})
.unwrap_or(old.len());
if end - start > 0 {
change_list.commit_traversal();
let mut t = change_list.save_children_to_temporaries(
shared_prefix_count + start,
shared_prefix_count + end,
);
for i in start..end {
old_index_to_temp[i] = t;
t += 1;
}
}
debug_assert!(end <= old.len());
if end == old.len() {
break;
} else {
start = end + 1;
}
}
// Remove any old children whose keys were not reused in the new
// children. Remove from the end first so that we don't mess up indices.
let mut removed_count = 0;
for (i, old_child) in old.iter().enumerate().rev() {
if !shared_keys.contains(&old_child.key()) {
registry.remove_subtree(old_child);
change_list.commit_traversal();
change_list.remove_child(i + shared_prefix_count);
removed_count += 1;
}
}
// If there aren't any more new children, then we are done!
if new.is_empty() {
return;
}
// The longest increasing subsequence within `new_index_to_old_index`. This
// is the longest sequence on DOM nodes in `old` that are relatively ordered
// correctly within `new`. We will leave these nodes in place in the DOM,
// and only move nodes that are not part of the LIS. This results in the
// maximum number of DOM nodes left in place, AKA the minimum number of DOM
// nodes moved.
let mut new_index_is_in_lis = FxHashSet::default();
new_index_is_in_lis.reserve(new_index_to_old_index.len());
let mut predecessors = vec![0; new_index_to_old_index.len()];
let mut starts = vec![0; new_index_to_old_index.len()];
longest_increasing_subsequence::lis_with(
&new_index_to_old_index,
&mut new_index_is_in_lis,
|a, b| a < b,
&mut predecessors,
&mut starts,
);
// Now we will iterate from the end of the new children back to the
// beginning, diffing old children we are reusing and if they aren't in the
// LIS moving them to their new destination, or creating new children. Note
// that iterating in reverse order lets us use `Node.prototype.insertBefore`
// to move/insert children.
//
// But first, we ensure that we have a child on the change list stack that
// we can `insertBefore`. We handle this once before looping over `new`
// children, so that we don't have to keep checking on every loop iteration.
if shared_suffix_count > 0 {
// There is a shared suffix after these middle children. We will be
// inserting before that shared suffix, so add the first child of that
// shared suffix to the change list stack.
//
// [... parent]
change_list.go_down_to_child(old_shared_suffix_start - removed_count);
// [... parent first_child_of_shared_suffix]
} else {
// There is no shared suffix coming after these middle children.
// Therefore we have to process the last child in `new` and move it to
// the end of the parent's children if it isn't already there.
let last_index = new.len() - 1;
let last = new.last().unwrap_throw();
new = &new[..new.len() - 1];
if shared_keys.contains(&last.key()) {
let old_index = new_index_to_old_index[last_index];
let temp = old_index_to_temp[old_index];
// [... parent]
change_list.go_down_to_temp_child(temp);
// [... parent last]
diff(
cached_set,
change_list,
registry,
&old[old_index],
last,
cached_roots,
);
if new_index_is_in_lis.contains(&last_index) {
// Don't move it, since it is already where it needs to be.
} else {
change_list.commit_traversal();
// [... parent last]
change_list.append_child();
// [... parent]
change_list.go_down_to_temp_child(temp);
// [... parent last]
}
} else {
change_list.commit_traversal();
// [... parent]
create(cached_set, change_list, registry, last, cached_roots);
// [... parent last]
change_list.append_child();
// [... parent]
change_list.go_down_to_reverse_child(0);
// [... parent last]
}
}
for (new_index, new_child) in new.iter().enumerate().rev() {
let old_index = new_index_to_old_index[new_index];
if old_index == u32::MAX as usize {
debug_assert!(!shared_keys.contains(&new_child.key()));
change_list.commit_traversal();
// [... parent successor]
create(cached_set, change_list, registry, new_child, cached_roots);
// [... parent successor new_child]
change_list.insert_before();
// [... parent new_child]
} else {
debug_assert!(shared_keys.contains(&new_child.key()));
let temp = old_index_to_temp[old_index];
debug_assert_ne!(temp, u32::MAX);
if new_index_is_in_lis.contains(&new_index) {
// [... parent successor]
change_list.go_to_temp_sibling(temp);
// [... parent new_child]
} else {
change_list.commit_traversal();
// [... parent successor]
change_list.push_temporary(temp);
// [... parent successor new_child]
change_list.insert_before();
// [... parent new_child]
}
diff(
cached_set,
change_list,
registry,
&old[old_index],
new_child,
cached_roots,
);
}
}
// [... parent child]
change_list.go_up();
// [... parent]
}
// Diff the suffix of keyed children that share the same keys in the same order.
//
// The parent must be on the change list stack when we enter this function:
//
// [... parent]
//
// When this function exits, the change list stack remains the same.
fn diff_keyed_suffix(
cached_set: &CachedSet,
change_list: &mut ChangeListBuilder,
registry: &mut EventsRegistry,
old: &[Node],
new: &[Node],
cached_roots: &mut FxHashSet<CacheId>,
new_shared_suffix_start: usize,
) {
debug_assert_eq!(old.len(), new.len());
debug_assert!(!old.is_empty());
// [... parent]
change_list.go_down();
// [... parent new_child]
for (i, (old_child, new_child)) in old.iter().zip(new.iter()).enumerate() {
change_list.go_to_sibling(new_shared_suffix_start + i);
diff(
cached_set,
change_list,
registry,
old_child,
new_child,
cached_roots,
);
}
// [... parent]
change_list.go_up();
}
// Diff children that are not keyed.
//
// The parent must be on the top of the change list stack when entering this
// function:
//
// [... parent]
//
// the change list stack is in the same state when this function returns.
fn diff_non_keyed_children(
cached_set: &CachedSet,
change_list: &mut ChangeListBuilder,
registry: &mut EventsRegistry,
old: &[Node],
new: &[Node],
cached_roots: &mut FxHashSet<CacheId>,
) {
// Handled these cases in `diff_children` before calling this function.
debug_assert!(!new.is_empty());
debug_assert!(!old.is_empty());
// [... parent]
change_list.go_down();
// [... parent child]
for (i, (new_child, old_child)) in new.iter().zip(old.iter()).enumerate() {
// [... parent prev_child]
change_list.go_to_sibling(i);
// [... parent this_child]
diff(
cached_set,
change_list,
registry,
old_child,
new_child,
cached_roots,
);
}
match old.len().cmp(&new.len()) {
Ordering::Greater => {
// [... parent prev_child]
change_list.go_to_sibling(new.len());
// [... parent first_child_to_remove]
change_list.commit_traversal();
remove_self_and_next_siblings(change_list, registry, &old[new.len()..]);
// [... parent]
}
Ordering::Less => {
// [... parent last_child]
change_list.go_up();
// [... parent]
change_list.commit_traversal();
create_and_append_children(
cached_set,
change_list,
registry,
&new[old.len()..],
cached_roots,
);
}
Ordering::Equal => {
// [... parent child]
change_list.go_up();
// [... parent]
}
}
}
// Create the given children and append them to the parent node.
//
// The parent node must currently be on top of the change list stack:
//
// [... parent]
//
// When this function returns, the change list stack is in the same state.
fn create_and_append_children(
cached_set: &CachedSet,
change_list: &mut ChangeListBuilder,
registry: &mut EventsRegistry,
new: &[Node],
cached_roots: &mut FxHashSet<CacheId>,
) {
debug_assert!(change_list.traversal_is_committed());
for child in new {
create(cached_set, change_list, registry, child, cached_roots);
change_list.append_child();
}
}
// Remove all of a node's children.
//
// The change list stack must have this shape upon entry to this function:
//
// [... parent]
//
// When this function returns, the change list stack is in the same state.
fn remove_all_children(
change_list: &mut ChangeListBuilder,
registry: &mut EventsRegistry,
old: &[Node],
) {
debug_assert!(change_list.traversal_is_committed());
for child in old {
registry.remove_subtree(child);
}
// Fast way to remove all children: set the node's textContent to an empty
// string.
change_list.set_text("");
}
// Remove the current child and all of its following siblings.
//
// The change list stack must have this shape upon entry to this function:
//
// [... parent child]
//
// After the function returns, the child is no longer on the change list stack:
//
// [... parent]
fn remove_self_and_next_siblings(
change_list: &mut ChangeListBuilder,
registry: &mut EventsRegistry,
old: &[Node],
) {
debug_assert!(change_list.traversal_is_committed());
for child in old {
registry.remove_subtree(child);
}
change_list.remove_self_and_next_siblings();
}
// Emit instructions to create the given virtual node.
//
// The change list stack may have any shape upon entering this function:
//
// [...]
//
// When this function returns, the new node is on top of the change list stack:
//
// [... node]
fn create(
cached_set: &CachedSet,
change_list: &mut ChangeListBuilder,
registry: &mut EventsRegistry,
node: &Node,
cached_roots: &mut FxHashSet<CacheId>,
) {
debug_assert!(change_list.traversal_is_committed());
match node.kind {
NodeKind::Text(TextNode { text }) => {
change_list.create_text_node(text);
}
NodeKind::Element(&ElementNode {
key: _,
tag_name,
listeners,
attributes,
children,
namespace,
}) => {
if let Some(namespace) = namespace {
change_list.create_element_ns(tag_name, namespace);
} else {
change_list.create_element(tag_name);
}
for l in listeners {
unsafe {
registry.add(l);
}
change_list.new_event_listener(l);
}
for attr in attributes {
change_list.set_attribute(&attr.name, &attr.value, namespace.is_some());
}
// Fast path: if there is a single text child, it is faster to
// create-and-append the text node all at once via setting the
// parent's `textContent` in a single change list instruction than
// to emit three instructions to (1) create a text node, (2) set its
// text content, and finally (3) append the text node to this
// parent.
if children.len() == 1 {
if let Node {
kind: NodeKind::Text(TextNode { text }),
} = children[0]
{
change_list.set_text(text);
return;
}
}
for child in children {
create(cached_set, change_list, registry, child, cached_roots);
change_list.append_child();
}
}
NodeKind::Cached(ref c) => {
cached_roots.insert(c.id);
let (node, template) = cached_set.get(c.id);
if let Some(template) = template {
create_with_template(
cached_set,
change_list,
registry,
template,
node,
cached_roots,
);
} else {
create(cached_set, change_list, registry, node, cached_roots);
}
}
}
}
// Get or create the template.
//