-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspatial_mean.py
132 lines (101 loc) · 4.26 KB
/
spatial_mean.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import numpy as np
import torch
from torch import nn
class SpatialMean_CHAN(nn.Module):
"""
Spatial Mean CHAN (mean coordinate of non-neg. weight tensor)
This computes offset from CENTER of 0th index voxel, assuming last index
is channel dim.
INPUT: Tensor [ Batch x Channels x H x W x D ]
OUTPUT: Tensor [ BATCH x Channels x 3]
"""
def __init__(self, input_shape, eps=1e-9, pytorch_order=True, return_power=False, d_model = 32*3, **kwargs):
super(SpatialMean_CHAN, self).__init__(**kwargs)
self.eps = eps
self.size_in = input_shape
self.coord_idx_list = []
self.input_shape_nb_nc = input_shape[1:]
self.n_chan = input_shape[0]
self.d_model = d_model
for idx,in_shape in enumerate(self.input_shape_nb_nc):
coord_idx_tensor = torch.range(0,in_shape-1)
coord_idx_tensor = torch.reshape(
coord_idx_tensor,
[in_shape] + [1]*(len(self.input_shape_nb_nc)-1)
)
#coord_idx_tensor = torch.repeat_interleave(
# coord_idx_tensor,
# torch.tensor([1] + self.input_shape_nb_nc[:idx] + self.input_shape_nb_nc[idx+1:])
#)
coord_idx_tensor = coord_idx_tensor.repeat(*([1] + self.input_shape_nb_nc[:idx] + self.input_shape_nb_nc[idx+1:]))
coord_idx_tensor = coord_idx_tensor.permute(
*(list(range(1,idx+1)) + [0] + list(range(idx+1,len(self.input_shape_nb_nc))))
)
self.coord_idx_list.append(
torch.reshape(coord_idx_tensor,[-1])
)
#self.coord_idx_list.append(
# torch.reshape(torch.cast(coord_idx_tensor, tf.float32),[-1])
#)
print("WARNING [spatial_mean]: pytorch reverses its axes because why not.",
"Thus, pytorch(z,y,x) is the order output unless specified via:\n",
"pytorch_order=False\n",
"This order is NOT reversed (i.e. left ambiguous) in their affine_grid",
sep=" ")
self.pytorch_order = pytorch_order
if pytorch_order:
self.coord_idx_list.reverse()
self.coord_idxs = torch.stack(self.coord_idx_list)
self.coord_idxs = torch.unsqueeze(self.coord_idxs, 0)
self.coord_idxs = torch.unsqueeze(self.coord_idxs, 0)
#TODO Here we can (re)map over the channel dims instead of tilling
#self.coord_idxs = self.coord_idxs.repeat(self.n_chan,1,1)
self.angle_rates = (1 / torch.pow(10000, (2 * torch.arange(self.d_model).float() / float(self.d_model)))).to('cuda')
self.return_power = return_power
def _apply_coords(self,x, verbose=False):
#!ALERT This is what the warning is about
if verbose:
print(x.shape)
print(self.coord_idxs.shape)
#x = torch.unsqueeze( x, 1 ).repeat(1,3,1)
x = torch.unsqueeze( x, 2 )
if verbose:
print(x.shape)
numerator = torch.sum( x*self.coord_idxs, dim=[3])
#here, we do not want the gradient to see a normalization.
denominator = torch.sum(torch.abs(x.detach()) + self.eps,dim=[3])
if verbose:
print(numerator.shape)
print(denominator.shape)
return numerator / denominator
def forward(self, x):
#batch
#x = keras.backend.batch_flatten(x)
x = torch.reshape( x, [-1, self.n_chan, np.prod(self.input_shape_nb_nc)] )
x = torch.abs(x)
#print("power by chan",power_by_chan)
#haha these are some axes.
#but really, they're the axes we sum over
#sum_axes = list(range(len(self.input_shape_nb_nc)))
#sum_axes = [1] #list(range(len(self.input_shape_nb_nc)))
#outputs = torch.vmap( self._apply_coords )(x)
#outputs = []
outputs = self._apply_coords(x)
#for idx in range( x.size(0) ):
# outputs.append(self._apply_coords(x[idx]))
#outputs = torch.stack(outputs)
if self.return_power:
power_by_chan = x.sum(dim=2,keepdim=True)
return outputs, power_by_chan
return outputs #K.mean(K.batch_flatten(K.square(x[0] - x[1])), -1)
def time_encoder(self, position):
positions = position * self.angle_rates
positions = positions.view(-1, self.d_model // 3)
pos_encoding = torch.cat([torch.sin(positions), torch.cos(positions)], dim=-1)
return pos_encoding.permute(1,0).unsqueeze(0)
def to(self, *args, **kwargs):
self = super().to(*args, **kwargs)
self.coord_idxs = self.coord_idxs.to(*args, **kwargs)
for idx in range(len(self.coord_idx_list)):
self.coord_idx_list[idx].to(*args, **kwargs)
return self