forked from nodejs/node
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathparser-base.h
6297 lines (5496 loc) · 225 KB
/
parser-base.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_PARSING_PARSER_BASE_H_
#define V8_PARSING_PARSER_BASE_H_
#include <stdint.h>
#include <utility>
#include <vector>
#include "src/ast/ast-source-ranges.h"
#include "src/ast/ast.h"
#include "src/ast/scopes.h"
#include "src/base/flags.h"
#include "src/base/hashmap.h"
#include "src/base/v8-fallthrough.h"
#include "src/codegen/bailout-reason.h"
#include "src/common/globals.h"
#include "src/common/message-template.h"
#include "src/logging/counters.h"
#include "src/logging/log.h"
#include "src/objects/function-kind.h"
#include "src/parsing/expression-scope.h"
#include "src/parsing/func-name-inferrer.h"
#include "src/parsing/parse-info.h"
#include "src/parsing/scanner.h"
#include "src/parsing/token.h"
#include "src/utils/pointer-with-payload.h"
#include "src/zone/zone-chunk-list.h"
namespace v8 {
namespace internal {
enum FunctionNameValidity {
kFunctionNameIsStrictReserved,
kSkipFunctionNameCheck,
kFunctionNameValidityUnknown
};
enum AllowLabelledFunctionStatement {
kAllowLabelledFunctionStatement,
kDisallowLabelledFunctionStatement,
};
enum ParsingArrowHeadFlag { kCertainlyNotArrowHead, kMaybeArrowHead };
enum class ParseFunctionFlag : uint8_t {
kIsNormal = 0,
kIsGenerator = 1 << 0,
kIsAsync = 1 << 1
};
using ParseFunctionFlags = base::Flags<ParseFunctionFlag>;
struct FormalParametersBase {
explicit FormalParametersBase(DeclarationScope* scope) : scope(scope) {}
int num_parameters() const {
// Don't include the rest parameter into the function's formal parameter
// count (esp. the SharedFunctionInfo::internal_formal_parameter_count,
// which says whether we need to create an arguments adaptor frame).
return arity - has_rest;
}
void UpdateArityAndFunctionLength(bool is_optional, bool is_rest) {
if (!is_optional && !is_rest && function_length == arity) {
++function_length;
}
++arity;
}
DeclarationScope* scope;
bool has_rest = false;
bool is_simple = true;
int function_length = 0;
int arity = 0;
};
// Stack-allocated scope to collect source ranges from the parser.
class SourceRangeScope final {
public:
SourceRangeScope(const Scanner* scanner, SourceRange* range)
: scanner_(scanner), range_(range) {
range_->start = scanner->peek_location().beg_pos;
DCHECK_NE(range_->start, kNoSourcePosition);
DCHECK_EQ(range_->end, kNoSourcePosition);
}
~SourceRangeScope() {
DCHECK_EQ(kNoSourcePosition, range_->end);
range_->end = scanner_->location().end_pos;
DCHECK_NE(range_->end, kNoSourcePosition);
}
private:
const Scanner* scanner_;
SourceRange* range_;
DISALLOW_IMPLICIT_CONSTRUCTORS(SourceRangeScope);
};
// ----------------------------------------------------------------------------
// The RETURN_IF_PARSE_ERROR macro is a convenient macro to enforce error
// handling for functions that may fail (by returning if there was an parser
// error).
//
// Usage:
// foo = ParseFoo(); // may fail
// RETURN_IF_PARSE_ERROR
//
// SAFE_USE(foo);
#define RETURN_IF_PARSE_ERROR \
if (has_error()) return impl()->NullStatement();
// Common base class template shared between parser and pre-parser.
// The Impl parameter is the actual class of the parser/pre-parser,
// following the Curiously Recurring Template Pattern (CRTP).
// The structure of the parser objects is roughly the following:
//
// // A structure template containing type definitions, needed to
// // avoid a cyclic dependency.
// template <typename Impl>
// struct ParserTypes;
//
// // The parser base object, which should just implement pure
// // parser behavior. The Impl parameter is the actual derived
// // class (according to CRTP), which implements impure parser
// // behavior.
// template <typename Impl>
// class ParserBase { ... };
//
// // And then, for each parser variant (e.g., parser, preparser, etc):
// class Parser;
//
// template <>
// class ParserTypes<Parser> { ... };
//
// class Parser : public ParserBase<Parser> { ... };
//
// The parser base object implements pure parsing, according to the
// language grammar. Different parser implementations may exhibit
// different parser-driven behavior that is not considered as pure
// parsing, e.g., early error detection and reporting, AST generation, etc.
// The ParserTypes structure encapsulates the differences in the
// types used in parsing methods. E.g., Parser methods use Expression*
// and PreParser methods use PreParserExpression. For any given parser
// implementation class Impl, it is expected to contain the following typedefs:
//
// template <>
// struct ParserTypes<Impl> {
// // Synonyms for ParserBase<Impl> and Impl, respectively.
// typedef Base;
// typedef Impl;
// // Return types for traversing functions.
// typedef Identifier;
// typedef Expression;
// typedef FunctionLiteral;
// typedef ObjectLiteralProperty;
// typedef ClassLiteralProperty;
// typedef ExpressionList;
// typedef ObjectPropertyList;
// typedef ClassPropertyList;
// typedef FormalParameters;
// typedef Statement;
// typedef StatementList;
// typedef Block;
// typedef BreakableStatement;
// typedef ForStatement;
// typedef IterationStatement;
// // For constructing objects returned by the traversing functions.
// typedef Factory;
// // For other implementation-specific tasks.
// typedef Target;
// typedef TargetScope;
// };
template <typename Impl>
struct ParserTypes;
enum class ParsePropertyKind : uint8_t {
kAccessorGetter,
kAccessorSetter,
kValue,
kShorthand,
kAssign,
kMethod,
kClassField,
kShorthandOrClassField,
kSpread,
kNotSet
};
template <typename Impl>
class ParserBase {
public:
// Shorten type names defined by ParserTypes<Impl>.
using Types = ParserTypes<Impl>;
using ExpressionScope = typename v8::internal::ExpressionScope<Types>;
using ExpressionParsingScope =
typename v8::internal::ExpressionParsingScope<Types>;
using AccumulationScope = typename v8::internal::AccumulationScope<Types>;
using ArrowHeadParsingScope =
typename v8::internal::ArrowHeadParsingScope<Types>;
using VariableDeclarationParsingScope =
typename v8::internal::VariableDeclarationParsingScope<Types>;
using ParameterDeclarationParsingScope =
typename v8::internal::ParameterDeclarationParsingScope<Types>;
// Return types for traversing functions.
using BlockT = typename Types::Block;
using BreakableStatementT = typename Types::BreakableStatement;
using ClassLiteralPropertyT = typename Types::ClassLiteralProperty;
using ClassPropertyListT = typename Types::ClassPropertyList;
using ExpressionT = typename Types::Expression;
using ExpressionListT = typename Types::ExpressionList;
using FormalParametersT = typename Types::FormalParameters;
using ForStatementT = typename Types::ForStatement;
using FunctionLiteralT = typename Types::FunctionLiteral;
using IdentifierT = typename Types::Identifier;
using IterationStatementT = typename Types::IterationStatement;
using ObjectLiteralPropertyT = typename Types::ObjectLiteralProperty;
using ObjectPropertyListT = typename Types::ObjectPropertyList;
using StatementT = typename Types::Statement;
using StatementListT = typename Types::StatementList;
using SuspendExpressionT = typename Types::Suspend;
// For constructing objects returned by the traversing functions.
using FactoryT = typename Types::Factory;
// Other implementation-specific tasks.
using FuncNameInferrer = typename Types::FuncNameInferrer;
using FuncNameInferrerState = typename Types::FuncNameInferrer::State;
using SourceRange = typename Types::SourceRange;
using SourceRangeScope = typename Types::SourceRangeScope;
// All implementation-specific methods must be called through this.
Impl* impl() { return static_cast<Impl*>(this); }
const Impl* impl() const { return static_cast<const Impl*>(this); }
ParserBase(Zone* zone, Scanner* scanner, uintptr_t stack_limit,
v8::Extension* extension, AstValueFactory* ast_value_factory,
PendingCompilationErrorHandler* pending_error_handler,
RuntimeCallStats* runtime_call_stats, Logger* logger,
UnoptimizedCompileFlags flags, bool parsing_on_main_thread)
: scope_(nullptr),
original_scope_(nullptr),
function_state_(nullptr),
extension_(extension),
fni_(ast_value_factory),
ast_value_factory_(ast_value_factory),
ast_node_factory_(ast_value_factory, zone),
runtime_call_stats_(runtime_call_stats),
logger_(logger),
parsing_on_main_thread_(parsing_on_main_thread),
stack_limit_(stack_limit),
pending_error_handler_(pending_error_handler),
zone_(zone),
expression_scope_(nullptr),
scanner_(scanner),
flags_(flags),
function_literal_id_(0),
default_eager_compile_hint_(FunctionLiteral::kShouldLazyCompile) {
pointer_buffer_.reserve(32);
variable_buffer_.reserve(32);
}
const UnoptimizedCompileFlags& flags() const { return flags_; }
bool allow_eval_cache() const { return allow_eval_cache_; }
void set_allow_eval_cache(bool allow) { allow_eval_cache_ = allow; }
V8_INLINE bool has_error() const { return scanner()->has_parser_error(); }
uintptr_t stack_limit() const { return stack_limit_; }
void set_stack_limit(uintptr_t stack_limit) { stack_limit_ = stack_limit; }
void set_default_eager_compile_hint(
FunctionLiteral::EagerCompileHint eager_compile_hint) {
default_eager_compile_hint_ = eager_compile_hint;
}
FunctionLiteral::EagerCompileHint default_eager_compile_hint() const {
return default_eager_compile_hint_;
}
int loop_nesting_depth() const {
return function_state_->loop_nesting_depth();
}
int GetNextFunctionLiteralId() { return ++function_literal_id_; }
int GetLastFunctionLiteralId() const { return function_literal_id_; }
void SkipFunctionLiterals(int delta) { function_literal_id_ += delta; }
void ResetFunctionLiteralId() { function_literal_id_ = 0; }
// The Zone where the parsing outputs are stored.
Zone* main_zone() const { return ast_value_factory()->zone(); }
// The current Zone, which might be the main zone or a temporary Zone.
Zone* zone() const { return zone_; }
protected:
friend class v8::internal::ExpressionScope<ParserTypes<Impl>>;
friend class v8::internal::ExpressionParsingScope<ParserTypes<Impl>>;
friend class v8::internal::ArrowHeadParsingScope<ParserTypes<Impl>>;
enum VariableDeclarationContext {
kStatementListItem,
kStatement,
kForStatement
};
class ClassLiteralChecker;
// ---------------------------------------------------------------------------
// BlockState and FunctionState implement the parser's scope stack.
// The parser's current scope is in scope_. BlockState and FunctionState
// constructors push on the scope stack and the destructors pop. They are also
// used to hold the parser's per-funcion state.
class BlockState {
public:
BlockState(Scope** scope_stack, Scope* scope)
: scope_stack_(scope_stack), outer_scope_(*scope_stack) {
*scope_stack_ = scope;
}
BlockState(Zone* zone, Scope** scope_stack)
: BlockState(scope_stack,
zone->New<Scope>(zone, *scope_stack, BLOCK_SCOPE)) {}
~BlockState() { *scope_stack_ = outer_scope_; }
private:
Scope** const scope_stack_;
Scope* const outer_scope_;
};
// ---------------------------------------------------------------------------
// Target is a support class to facilitate manipulation of the
// Parser's target_stack_ (the stack of potential 'break' and
// 'continue' statement targets). Upon construction, a new target is
// added; it is removed upon destruction.
// |labels| is a list of all labels that can be used as a target for break.
// |own_labels| is a list of all labels that an iteration statement is
// directly prefixed with, i.e. all the labels that a continue statement in
// the body can use to continue this iteration statement. This is always a
// subset of |labels|.
//
// Example: "l1: { l2: if (b) l3: l4: for (;;) s }"
// labels() of the Block will be l1.
// labels() of the ForStatement will be l2, l3, l4.
// own_labels() of the ForStatement will be l3, l4.
class Target {
public:
enum TargetType { TARGET_FOR_ANONYMOUS, TARGET_FOR_NAMED_ONLY };
Target(ParserBase* parser, BreakableStatementT statement,
ZonePtrList<const AstRawString>* labels,
ZonePtrList<const AstRawString>* own_labels, TargetType target_type)
: stack_(parser->function_state_->target_stack_address()),
statement_(statement),
labels_(labels),
own_labels_(own_labels),
target_type_(target_type),
previous_(*stack_) {
DCHECK_IMPLIES(Impl::IsIterationStatement(statement_),
target_type == Target::TARGET_FOR_ANONYMOUS);
DCHECK_IMPLIES(!Impl::IsIterationStatement(statement_),
own_labels == nullptr);
*stack_ = this;
}
~Target() { *stack_ = previous_; }
const Target* previous() const { return previous_; }
const BreakableStatementT statement() const { return statement_; }
const ZonePtrList<const AstRawString>* labels() const { return labels_; }
const ZonePtrList<const AstRawString>* own_labels() const {
return own_labels_;
}
bool is_iteration() const { return Impl::IsIterationStatement(statement_); }
bool is_target_for_anonymous() const {
return target_type_ == TARGET_FOR_ANONYMOUS;
}
private:
Target** const stack_;
const BreakableStatementT statement_;
const ZonePtrList<const AstRawString>* const labels_;
const ZonePtrList<const AstRawString>* const own_labels_;
const TargetType target_type_;
Target* const previous_;
};
Target* target_stack() { return *function_state_->target_stack_address(); }
BreakableStatementT LookupBreakTarget(IdentifierT label) {
bool anonymous = impl()->IsNull(label);
for (const Target* t = target_stack(); t != nullptr; t = t->previous()) {
if ((anonymous && t->is_target_for_anonymous()) ||
(!anonymous &&
ContainsLabel(t->labels(),
impl()->GetRawNameFromIdentifier(label)))) {
return t->statement();
}
}
return impl()->NullStatement();
}
IterationStatementT LookupContinueTarget(IdentifierT label) {
bool anonymous = impl()->IsNull(label);
for (const Target* t = target_stack(); t != nullptr; t = t->previous()) {
if (!t->is_iteration()) continue;
DCHECK(t->is_target_for_anonymous());
if (anonymous || ContainsLabel(t->own_labels(),
impl()->GetRawNameFromIdentifier(label))) {
return impl()->AsIterationStatement(t->statement());
}
}
return impl()->NullStatement();
}
class FunctionState final : public BlockState {
public:
FunctionState(FunctionState** function_state_stack, Scope** scope_stack,
DeclarationScope* scope);
~FunctionState();
DeclarationScope* scope() const { return scope_->AsDeclarationScope(); }
void AddProperty() { expected_property_count_++; }
int expected_property_count() { return expected_property_count_; }
void DisableOptimization(BailoutReason reason) {
dont_optimize_reason_ = reason;
}
BailoutReason dont_optimize_reason() { return dont_optimize_reason_; }
void AddSuspend() { suspend_count_++; }
int suspend_count() const { return suspend_count_; }
bool CanSuspend() const { return suspend_count_ > 0; }
FunctionKind kind() const { return scope()->function_kind(); }
bool next_function_is_likely_called() const {
return next_function_is_likely_called_;
}
bool previous_function_was_likely_called() const {
return previous_function_was_likely_called_;
}
void set_next_function_is_likely_called() {
next_function_is_likely_called_ = !FLAG_max_lazy;
}
void RecordFunctionOrEvalCall() { contains_function_or_eval_ = true; }
bool contains_function_or_eval() const {
return contains_function_or_eval_;
}
class FunctionOrEvalRecordingScope {
public:
explicit FunctionOrEvalRecordingScope(FunctionState* state)
: state_and_prev_value_(state, state->contains_function_or_eval_) {
state->contains_function_or_eval_ = false;
}
~FunctionOrEvalRecordingScope() {
bool found = state_and_prev_value_->contains_function_or_eval_;
if (!found) {
state_and_prev_value_->contains_function_or_eval_ =
state_and_prev_value_.GetPayload();
}
}
private:
PointerWithPayload<FunctionState, bool, 1> state_and_prev_value_;
};
class LoopScope final {
public:
explicit LoopScope(FunctionState* function_state)
: function_state_(function_state) {
function_state_->loop_nesting_depth_++;
}
~LoopScope() { function_state_->loop_nesting_depth_--; }
private:
FunctionState* function_state_;
};
int loop_nesting_depth() const { return loop_nesting_depth_; }
Target** target_stack_address() { return &target_stack_; }
private:
// Properties count estimation.
int expected_property_count_;
// How many suspends are needed for this function.
int suspend_count_;
// How deeply nested we currently are in this function.
int loop_nesting_depth_ = 0;
FunctionState** function_state_stack_;
FunctionState* outer_function_state_;
DeclarationScope* scope_;
Target* target_stack_ = nullptr; // for break, continue statements
// A reason, if any, why this function should not be optimized.
BailoutReason dont_optimize_reason_;
// Record whether the next (=== immediately following) function literal is
// preceded by a parenthesis / exclamation mark. Also record the previous
// state.
// These are managed by the FunctionState constructor; the caller may only
// call set_next_function_is_likely_called.
bool next_function_is_likely_called_;
bool previous_function_was_likely_called_;
// Track if a function or eval occurs within this FunctionState
bool contains_function_or_eval_;
friend Impl;
};
struct DeclarationDescriptor {
VariableMode mode;
VariableKind kind;
int declaration_pos;
int initialization_pos;
};
struct DeclarationParsingResult {
struct Declaration {
Declaration(ExpressionT pattern, ExpressionT initializer)
: pattern(pattern), initializer(initializer) {
DCHECK_IMPLIES(Impl::IsNull(pattern), Impl::IsNull(initializer));
}
ExpressionT pattern;
ExpressionT initializer;
int value_beg_pos = kNoSourcePosition;
};
DeclarationParsingResult()
: first_initializer_loc(Scanner::Location::invalid()),
bindings_loc(Scanner::Location::invalid()) {}
DeclarationDescriptor descriptor;
std::vector<Declaration> declarations;
Scanner::Location first_initializer_loc;
Scanner::Location bindings_loc;
};
struct CatchInfo {
public:
explicit CatchInfo(ParserBase* parser)
: pattern(parser->impl()->NullExpression()),
variable(nullptr),
scope(nullptr) {}
ExpressionT pattern;
Variable* variable;
Scope* scope;
};
struct ForInfo {
public:
explicit ForInfo(ParserBase* parser)
: bound_names(1, parser->zone()),
mode(ForEachStatement::ENUMERATE),
position(kNoSourcePosition),
parsing_result() {}
ZonePtrList<const AstRawString> bound_names;
ForEachStatement::VisitMode mode;
int position;
DeclarationParsingResult parsing_result;
};
struct ClassInfo {
public:
explicit ClassInfo(ParserBase* parser)
: extends(parser->impl()->NullExpression()),
public_members(parser->impl()->NewClassPropertyList(4)),
private_members(parser->impl()->NewClassPropertyList(4)),
static_fields(parser->impl()->NewClassPropertyList(4)),
instance_fields(parser->impl()->NewClassPropertyList(4)),
constructor(parser->impl()->NullExpression()),
has_seen_constructor(false),
has_name_static_property(false),
has_static_computed_names(false),
has_static_class_fields(false),
has_static_private_methods(false),
has_instance_members(false),
requires_brand(false),
is_anonymous(false),
has_private_methods(false),
static_fields_scope(nullptr),
instance_members_scope(nullptr),
computed_field_count(0) {}
ExpressionT extends;
ClassPropertyListT public_members;
ClassPropertyListT private_members;
ClassPropertyListT static_fields;
ClassPropertyListT instance_fields;
FunctionLiteralT constructor;
bool has_seen_constructor;
bool has_name_static_property;
bool has_static_computed_names;
bool has_static_class_fields;
bool has_static_private_methods;
bool has_instance_members;
bool requires_brand;
bool is_anonymous;
bool has_private_methods;
DeclarationScope* static_fields_scope;
DeclarationScope* instance_members_scope;
int computed_field_count;
};
enum class PropertyPosition { kObjectLiteral, kClassLiteral };
struct ParsePropertyInfo {
public:
explicit ParsePropertyInfo(ParserBase* parser,
AccumulationScope* accumulation_scope = nullptr)
: accumulation_scope(accumulation_scope),
name(parser->impl()->NullIdentifier()),
position(PropertyPosition::kClassLiteral),
function_flags(ParseFunctionFlag::kIsNormal),
kind(ParsePropertyKind::kNotSet),
is_computed_name(false),
is_private(false),
is_static(false),
is_rest(false) {}
bool ParsePropertyKindFromToken(Token::Value token) {
// This returns true, setting the property kind, iff the given token is
// one which must occur after a property name, indicating that the
// previous token was in fact a name and not a modifier (like the "get" in
// "get x").
switch (token) {
case Token::COLON:
kind = ParsePropertyKind::kValue;
return true;
case Token::COMMA:
kind = ParsePropertyKind::kShorthand;
return true;
case Token::RBRACE:
kind = ParsePropertyKind::kShorthandOrClassField;
return true;
case Token::ASSIGN:
kind = ParsePropertyKind::kAssign;
return true;
case Token::LPAREN:
kind = ParsePropertyKind::kMethod;
return true;
case Token::MUL:
case Token::SEMICOLON:
kind = ParsePropertyKind::kClassField;
return true;
default:
break;
}
return false;
}
AccumulationScope* accumulation_scope;
IdentifierT name;
PropertyPosition position;
ParseFunctionFlags function_flags;
ParsePropertyKind kind;
bool is_computed_name;
bool is_private;
bool is_static;
bool is_rest;
};
void DeclareLabel(ZonePtrList<const AstRawString>** labels,
ZonePtrList<const AstRawString>** own_labels,
const AstRawString* label) {
if (ContainsLabel(*labels, label) || TargetStackContainsLabel(label)) {
ReportMessage(MessageTemplate::kLabelRedeclaration, label);
return;
}
// Add {label} to both {labels} and {own_labels}.
if (*labels == nullptr) {
DCHECK_NULL(*own_labels);
*labels =
zone()->template New<ZonePtrList<const AstRawString>>(1, zone());
*own_labels =
zone()->template New<ZonePtrList<const AstRawString>>(1, zone());
} else {
if (*own_labels == nullptr) {
*own_labels =
zone()->template New<ZonePtrList<const AstRawString>>(1, zone());
}
}
(*labels)->Add(label, zone());
(*own_labels)->Add(label, zone());
}
bool ContainsLabel(const ZonePtrList<const AstRawString>* labels,
const AstRawString* label) {
DCHECK_NOT_NULL(label);
if (labels != nullptr) {
for (int i = labels->length(); i-- > 0;) {
if (labels->at(i) == label) return true;
}
}
return false;
}
bool TargetStackContainsLabel(const AstRawString* label) {
for (const Target* t = target_stack(); t != nullptr; t = t->previous()) {
if (ContainsLabel(t->labels(), label)) return true;
}
return false;
}
ClassLiteralProperty::Kind ClassPropertyKindFor(ParsePropertyKind kind) {
switch (kind) {
case ParsePropertyKind::kAccessorGetter:
return ClassLiteralProperty::GETTER;
case ParsePropertyKind::kAccessorSetter:
return ClassLiteralProperty::SETTER;
case ParsePropertyKind::kMethod:
return ClassLiteralProperty::METHOD;
case ParsePropertyKind::kClassField:
return ClassLiteralProperty::FIELD;
default:
// Only returns for deterministic kinds
UNREACHABLE();
}
}
VariableMode GetVariableMode(ClassLiteralProperty::Kind kind) {
switch (kind) {
case ClassLiteralProperty::Kind::FIELD:
return VariableMode::kConst;
case ClassLiteralProperty::Kind::METHOD:
return VariableMode::kPrivateMethod;
case ClassLiteralProperty::Kind::GETTER:
return VariableMode::kPrivateGetterOnly;
case ClassLiteralProperty::Kind::SETTER:
return VariableMode::kPrivateSetterOnly;
}
}
const AstRawString* ClassFieldVariableName(AstValueFactory* ast_value_factory,
int index) {
std::string name = ".class-field-" + std::to_string(index);
return ast_value_factory->GetOneByteString(name.c_str());
}
DeclarationScope* NewScriptScope(REPLMode repl_mode) const {
return zone()->template New<DeclarationScope>(zone(), ast_value_factory(),
repl_mode);
}
DeclarationScope* NewVarblockScope() const {
return zone()->template New<DeclarationScope>(zone(), scope(), BLOCK_SCOPE);
}
ModuleScope* NewModuleScope(DeclarationScope* parent) const {
return zone()->template New<ModuleScope>(parent, ast_value_factory());
}
DeclarationScope* NewEvalScope(Scope* parent) const {
return zone()->template New<DeclarationScope>(zone(), parent, EVAL_SCOPE);
}
ClassScope* NewClassScope(Scope* parent, bool is_anonymous) const {
return zone()->template New<ClassScope>(zone(), parent, is_anonymous);
}
Scope* NewScope(ScopeType scope_type) const {
return NewScopeWithParent(scope(), scope_type);
}
// This constructor should only be used when absolutely necessary. Most scopes
// should automatically use scope() as parent, and be fine with
// NewScope(ScopeType) above.
Scope* NewScopeWithParent(Scope* parent, ScopeType scope_type) const {
// Must always use the specific constructors for the blocklisted scope
// types.
DCHECK_NE(FUNCTION_SCOPE, scope_type);
DCHECK_NE(SCRIPT_SCOPE, scope_type);
DCHECK_NE(MODULE_SCOPE, scope_type);
DCHECK_NOT_NULL(parent);
return zone()->template New<Scope>(zone(), parent, scope_type);
}
// Creates a function scope that always allocates in zone(). The function
// scope itself is either allocated in zone() or in target_zone if one is
// passed in.
DeclarationScope* NewFunctionScope(FunctionKind kind,
Zone* parse_zone = nullptr) const {
DCHECK(ast_value_factory());
if (parse_zone == nullptr) parse_zone = zone();
DeclarationScope* result = zone()->template New<DeclarationScope>(
parse_zone, scope(), FUNCTION_SCOPE, kind);
// Record presence of an inner function scope
function_state_->RecordFunctionOrEvalCall();
// TODO(verwaest): Move into the DeclarationScope constructor.
if (!IsArrowFunction(kind)) {
result->DeclareDefaultFunctionVariables(ast_value_factory());
}
return result;
}
V8_INLINE DeclarationScope* GetDeclarationScope() const {
return scope()->GetDeclarationScope();
}
V8_INLINE DeclarationScope* GetClosureScope() const {
return scope()->GetClosureScope();
}
VariableProxy* NewRawVariable(const AstRawString* name, int pos) {
return factory()->ast_node_factory()->NewVariableProxy(
name, NORMAL_VARIABLE, pos);
}
VariableProxy* NewUnresolved(const AstRawString* name) {
return scope()->NewUnresolved(factory()->ast_node_factory(), name,
scanner()->location().beg_pos);
}
VariableProxy* NewUnresolved(const AstRawString* name, int begin_pos,
VariableKind kind = NORMAL_VARIABLE) {
return scope()->NewUnresolved(factory()->ast_node_factory(), name,
begin_pos, kind);
}
Scanner* scanner() const { return scanner_; }
AstValueFactory* ast_value_factory() const { return ast_value_factory_; }
int position() const { return scanner_->location().beg_pos; }
int peek_position() const { return scanner_->peek_location().beg_pos; }
int end_position() const { return scanner_->location().end_pos; }
int peek_end_position() const { return scanner_->peek_location().end_pos; }
bool stack_overflow() const {
return pending_error_handler()->stack_overflow();
}
void set_stack_overflow() {
scanner_->set_parser_error();
pending_error_handler()->set_stack_overflow();
}
void CheckStackOverflow() {
// Any further calls to Next or peek will return the illegal token.
if (GetCurrentStackPosition() < stack_limit_) set_stack_overflow();
}
V8_INLINE Token::Value peek() { return scanner()->peek(); }
// Returns the position past the following semicolon (if it exists), and the
// position past the end of the current token otherwise.
int PositionAfterSemicolon() {
return (peek() == Token::SEMICOLON) ? peek_end_position() : end_position();
}
V8_INLINE Token::Value PeekAhead() { return scanner()->PeekAhead(); }
V8_INLINE Token::Value Next() { return scanner()->Next(); }
V8_INLINE void Consume(Token::Value token) {
Token::Value next = scanner()->Next();
USE(next);
USE(token);
DCHECK_IMPLIES(!has_error(), next == token);
}
V8_INLINE bool Check(Token::Value token) {
Token::Value next = scanner()->peek();
if (next == token) {
Consume(next);
return true;
}
return false;
}
void Expect(Token::Value token) {
Token::Value next = Next();
if (V8_UNLIKELY(next != token)) {
ReportUnexpectedToken(next);
}
}
void ExpectSemicolon() {
// Check for automatic semicolon insertion according to
// the rules given in ECMA-262, section 7.9, page 21.
Token::Value tok = peek();
if (V8_LIKELY(tok == Token::SEMICOLON)) {
Next();
return;
}
if (V8_LIKELY(scanner()->HasLineTerminatorBeforeNext() ||
Token::IsAutoSemicolon(tok))) {
return;
}
if (scanner()->current_token() == Token::AWAIT && !is_async_function()) {
ReportMessageAt(scanner()->location(),
flags().allow_harmony_top_level_await()
? MessageTemplate::kAwaitNotInAsyncContext
: MessageTemplate::kAwaitNotInAsyncFunction);
return;
}
ReportUnexpectedToken(Next());
}
bool peek_any_identifier() { return Token::IsAnyIdentifier(peek()); }
bool PeekContextualKeyword(const AstRawString* name) {
return peek() == Token::IDENTIFIER &&
!scanner()->next_literal_contains_escapes() &&
scanner()->NextSymbol(ast_value_factory()) == name;
}
bool CheckContextualKeyword(const AstRawString* name) {
if (PeekContextualKeyword(name)) {
Consume(Token::IDENTIFIER);
return true;
}
return false;
}
void ExpectContextualKeyword(const AstRawString* name,
const char* fullname = nullptr, int pos = -1) {
Expect(Token::IDENTIFIER);
if (V8_UNLIKELY(scanner()->CurrentSymbol(ast_value_factory()) != name)) {
ReportUnexpectedToken(scanner()->current_token());
}
if (V8_UNLIKELY(scanner()->literal_contains_escapes())) {
const char* full = fullname == nullptr
? reinterpret_cast<const char*>(name->raw_data())
: fullname;
int start = pos == -1 ? position() : pos;
impl()->ReportMessageAt(Scanner::Location(start, end_position()),
MessageTemplate::kInvalidEscapedMetaProperty,
full);
}
}
bool CheckInOrOf(ForEachStatement::VisitMode* visit_mode) {
if (Check(Token::IN)) {
*visit_mode = ForEachStatement::ENUMERATE;
return true;
} else if (CheckContextualKeyword(ast_value_factory()->of_string())) {
*visit_mode = ForEachStatement::ITERATE;
return true;
}
return false;
}
bool PeekInOrOf() {
return peek() == Token::IN ||
PeekContextualKeyword(ast_value_factory()->of_string());
}
// Checks whether an octal literal was last seen between beg_pos and end_pos.
// Only called for strict mode strings.
void CheckStrictOctalLiteral(int beg_pos, int end_pos) {
Scanner::Location octal = scanner()->octal_position();
if (octal.IsValid() && beg_pos <= octal.beg_pos &&
octal.end_pos <= end_pos) {
MessageTemplate message = scanner()->octal_message();
DCHECK_NE(message, MessageTemplate::kNone);
impl()->ReportMessageAt(octal, message);
scanner()->clear_octal_position();
if (message == MessageTemplate::kStrictDecimalWithLeadingZero) {
impl()->CountUsage(v8::Isolate::kDecimalWithLeadingZeroInStrictMode);
}
}
}
// Checks if an octal literal or an invalid hex or unicode escape sequence
// appears in the current template literal token. In the presence of such,
// either returns false or reports an error, depending on should_throw.
// Otherwise returns true.
inline bool CheckTemplateEscapes(bool should_throw) {
DCHECK(Token::IsTemplate(scanner()->current_token()));
if (!scanner()->has_invalid_template_escape()) return true;
// Handle error case(s)
if (should_throw) {
impl()->ReportMessageAt(scanner()->invalid_template_escape_location(),
scanner()->invalid_template_escape_message());
}
scanner()->clear_invalid_template_escape_message();
return should_throw;