-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain_nas.py
381 lines (312 loc) · 16.8 KB
/
train_nas.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
import argparse
import os
import os.path as osp
import sys
import time
import logging
import warnings
from collections import defaultdict
from glob import glob
import torch
import numpy as np
import pickle
from torch import nn
from torch.utils import data
from viterbi import maxsum, sumprod_log, complete, score
from torchvision import datasets
from torchvision import transforms
from types import SimpleNamespace
import latency
import misc
from model import SlimMobilenet
logger = logging.getLogger(__name__)
warnings.filterwarnings("ignore", "(Possibly )?corrupt EXIF data", UserWarning)
parser = argparse.ArgumentParser(description='Train mobilenet slimmable/AOWS model')
parser.add_argument('--data', metavar='DIR', default='/imagenet',
help='path to dataset')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', default=20, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('-b', '--batch-size', default=512, type=int,
metavar='N', help='mini-batch size (default: 512)')
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float,
metavar='LR', help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--no-cuda', action="store_true")
parser.add_argument('--weight-decay', '--wd', default=1e-5, type=float,
metavar='W', help='weight decay (default: 1e-5)')
parser.add_argument('--print-freq', '-p', default=10, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('--resume-last', action='store_true',
help='resume to last checkpoint if found (supersedes resume)')
parser.add_argument("--debug", nargs="*", choices=["mini"], default="none",
help="do a mini epoch to check everything works.")
parser.add_argument('--max-width', type=float, default=1.5)
parser.add_argument('--min-width', type=float, default=0.2)
parser.add_argument('--levels', type=int, default=14)
parser.add_argument('--latency-target', type=float, default=0.04, help="latency target in objective")
parser.add_argument('--window', type=int, default=100000,
help="size of window over which the moving average of losses is computed in OWS and AOWS.")
parser.add_argument('--latency-model', type=str, default='output/model_trt16_K100.0.jsonl', help="latency model")
parser.add_argument('--gamma-iter', type=int, default=12, help="Number of Viterbi iterations to set gamma.")
parser.add_argument('--AOWS', action="store_true", help="use AOWS")
parser.add_argument('--AOWS-warmup', type=int, default=5, help="AOWS warmup epochs")
parser.add_argument('--AOWS-min-temp', type=float, default=0.0005, help="minimum (final) temperature")
parser.add_argument('--expname', default='output/nas_output')
def main():
args = parser.parse_args()
logger.info("=> creating model")
model = SlimMobilenet(min_width=args.min_width, max_width=args.max_width, levels=args.levels)
logger.info(model)
if not args.no_cuda:
model = nn.DataParallel(model).cuda()
criterion = nn.CrossEntropyLoss(reduction='none')
if not args.no_cuda:
criterion = criterion.cuda()
args.lr = args.lr * args.batch_size / 256
logger.info("learning rate scaling: using lr={}".format(args.lr))
optimizer = torch.optim.SGD(model.parameters(), args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
torch.backends.cudnn.benchmark = True
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
augment = [transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), ]
dataset_train = datasets.ImageFolder(os.path.join(args.data, 'train'),
transforms.Compose(augment + [transforms.ToTensor(), normalize]))
train_loader = data.DataLoader(dataset_train,
batch_size=args.batch_size,
num_workers=args.workers, pin_memory=True)
start_epoch = 0
ows_state = SimpleNamespace()
filters = model.filters if hasattr(model, 'filters') else model.module.filters
ows_state.histories = [{c: misc.MovingAverageMeter(args.window) for c in F.configurations} for F in filters]
ows_state.latency = dict(latency.load_model(args.latency_model))
if args.resume_last:
avail = glob(osp.join(args.expname, 'checkpoint*.pth'))
avail = [(int(f[-len('.pth') - 3:-len('.pth')]), f) for f in avail]
avail = sorted(avail)
if avail:
args.resume = avail[-1][1]
if args.resume:
if os.path.isfile(args.resume):
logger.info("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
start_epoch = checkpoint['epoch']
state_dict = checkpoint['state_dict']
key = next(iter(state_dict.keys()))
if key.startswith('module.') and args.no_cuda:
state_dict = {k[len('module.'):]: v for (k, v) in state_dict.items()}
model.load_state_dict(state_dict)
optimizer.load_state_dict(checkpoint['optimizer'])
if 'ows_state' in checkpoint:
ows_state.histories = checkpoint['ows_state'].histories
logger.info("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
else:
logger.info(f"=> no checkpoint found at '{args.resume}'")
args.resume = ''
if args.resume:
# Solve OWS one first time in order to allow re-evaluation on the last epoch with varying latency target
best_path, _, _, _, timing = solve_ows(model, start_epoch, len(train_loader), -1, ows_state, args, eval_only=True)
logger.info('Evaluation from resumed checkpoint...')
best_path_str = (f"Best configuration: {best_path}, "
f"predicted latency: {timing}")
logger.info(best_path_str)
for epoch in range(start_epoch, args.epochs):
history = train(train_loader, model, criterion, optimizer, epoch, ows_state, args)
logger.info(f"=> saving decision history for epoch {format(epoch + 1)}")
decision_target = 'decision{:03d}.pkl'.format(epoch + 1)
if args.expname:
os.makedirs(args.expname, exist_ok=True)
decision_target = osp.join(args.expname, decision_target)
with open(decision_target, 'wb') as f:
pickle.dump(history, f, protocol=4)
logger.info(f"=> saving checkpoint for epoch {epoch + 1}")
current_state = {
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
}
current_state['ows_state'] = ows_state
best_path_str = (f"Best configuration: {history['OWS'][-1]['best_path']}, "
f"predicted latency: {history['OWS'][-1]['pred_latency']}")
logger.info(best_path_str)
with open(osp.join(args.expname, f"ows_result_{epoch + 1:03d}.txt"), 'w') as f:
f.write(best_path_str + '\n')
filename = save_checkpoint(current_state, args.expname)
logger.info(f"checkpoint saved to {filename}.")
def train(train_loader, model, criterion, optimizer, epoch, ows_state, args):
meters = defaultdict(misc.AverageMeter)
model.train()
filters = model.filters if hasattr(model, 'filters') else model.module.filters
history = defaultdict(list)
end = time.time()
for iteration, (input, target) in enumerate(train_loader):
if "mini" in args.debug and iteration > 20: break
best_path, temperature, gamma_max, best_perf, timing = solve_ows(
model, epoch, len(train_loader), iteration, ows_state, args)
# measure data loading time
meters["data_time"].update(time.time() - end)
if not args.no_cuda:
target = target.cuda(non_blocking=True)
compute_results = misc.SWDefaultDict(misc.SWDict)
minconf = [F.configurations[0] for F in filters]
maxconf = [F.configurations[-1] for F in filters]
optimizer.zero_grad()
# sandwich rule: train maximum configuration
outp = model(input, configuration=maxconf)
loss = criterion(outp['x'], target)
loss.mean().backward()
compute_results['max']['x'] = outp['x'].detach()
compute_results['max']['loss_numpy'] = loss.detach().cpu().numpy()
compute_results['max']['prob'] = torch.nn.functional.softmax(compute_results['max']['x'], dim=1)
# sandwich rule: train minimum and random configuration with self-distillation
for kind in ('min', 'rand'):
conf = None if kind == 'rand' else minconf
outp = model(input, configuration=conf)
loss = misc.soft_cross_entropy(outp['x'], compute_results['max']['prob'].detach())
compute_results[kind]['soft_loss_numpy'] = loss.detach().cpu().numpy()
with torch.no_grad():
hard_loss_numpy = criterion(outp['x'], target).detach().cpu().numpy()
compute_results[kind]['loss_numpy'] = hard_loss_numpy
compute_results[kind]['x'] = outp['x'].detach()
if kind == 'rand':
compute_results['rand']['decision'] = outp['decision'].cpu().numpy()
loss.mean().backward()
for path, image_loss, image_refloss in zip(compute_results['rand']['decision'],
compute_results['rand']['loss_numpy'],
compute_results['max']['loss_numpy']):
for i, pi in enumerate(path):
ows_state.histories[i][pi].update(-(image_loss - image_refloss) / len(path), epoch, iteration)
for refname in ('min', 'max', 'rand'):
meters['loss_' + kind].update(compute_results[kind]['loss_numpy'].mean(), input.size(0))
refloss = compute_results[refname]['loss_numpy']
(prec1, prec5), refcorrect_ks = misc.accuracy(compute_results[refname]['x'].data,
target, topk=(1, 5), return_correct_k=True)
refcorrect1, refcorrect5 = [a.cpu().numpy().astype(bool) for a in refcorrect_ks]
history['loss_' + refname].append(refloss)
history['top1_' + refname].append(refcorrect1)
history['top5_' + refname].append(refcorrect5)
meters['top1_' + refname].update(prec1.item(), input.size(0))
meters['top5_' + refname].update(prec5.item(), input.size(0))
if 'soft_loss_numpy' in compute_results[refname]:
meters['loss_soft_' + kind].update(compute_results[kind]['soft_loss_numpy'].mean(), input.size(0))
history['loss_soft_' + refname].append(compute_results[refname]['soft_loss_numpy'])
history['configuration'].append(compute_results['rand']['decision'])
history['configuration'].append(compute_results['rand']['loss_numpy'])
optimizer.step()
# measure elapsed time
meters["batch_time"].update(time.time() - end)
end = time.time()
if iteration % args.print_freq == 0:
toprint = f"Epoch: [{epoch}][{iteration}/{len(train_loader)}]\t"
toprint += ('Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Prec@1 {top1_rand.val:.3f} ({top1_rand.avg:.3f})\t'
'Prec@5 {top5_rand.val:.3f} ({top5_rand.avg:.3f})\t'.format(**meters))
for key, meter in meters.items():
if key.startswith('loss'):
toprint += f'{key} {meter.val:.4f} ({meter.avg:.4f})\t'
logger.info(toprint)
# prints a string summarizing the sampling probabilities for each filter
probas_str = ""
for i, F in enumerate(filters):
if F.probability is not None:
probas_str += '|{} '.format(i)
for p in F.probability:
probas_str += str(int(100 * p)) + ' '
probas_log = None
if any(F.probability is not None for F in filters):
probas_log = tuple(F.probability for F in filters),
history['OWS'].append(dict(best_path=best_path, temperature=temperature, gamma_max=gamma_max,
best_pref=best_perf, pred_latency=timing, probas_log=probas_log))
if probas_str:
probas_str = '\n' + probas_str
ows_str = f"predicted latency: {timing}, perf: {best_perf}, T: {temperature}, gamma: {gamma_max}"
logger.info('best_path: ' + ','.join(map(str, best_path)) + ows_str + probas_str)
return history
def aows_temp(epoch, epoch_len, iteration, args):
schedule = [(0, 1.0), (args.AOWS_warmup, 1.0),
(args.AOWS_warmup + 1, 0.01),
(10, 0.001), (args.epochs, args.AOWS_min_temp)]
cur_phase = 0
for iphase, (phase, _) in enumerate(schedule):
if epoch >= phase:
cur_phase = iphase
phase, start_temp = schedule[cur_phase]
if cur_phase == len(schedule) - 1:
return start_temp
end_phase, end_temp = schedule[cur_phase + 1]
max_iter = epoch_len * (end_phase - phase)
cur_iter = epoch_len * (epoch - phase) + iteration
ratio = cur_iter / max_iter
log_T = (1.0 - ratio) * np.log10(start_temp) + ratio * np.log10(end_temp)
return 10 ** log_T
def solve_ows(model, epoch, len_epoch, iteration, ows_state, args, eval_only=False):
"""
Solves OWS equation and sets AOWS probabilities when AOWS is activated.
"""
if hasattr(model, 'module'): model = model.module
unaries = [[0.0]] + [[M.avg for M in C.values()] for C in ows_state.histories] + [[0.0]]
if not hasattr(ows_state, 'pairwise'):
pairwise = []
possible_in_channels = [3]
possible_outputs = iter([F.configurations for F in model.filters] + [[1000]])
for L in model.components:
possible_out = next(possible_outputs)
pair = np.zeros((len(possible_in_channels), len(possible_out)))
for incoming, p in enumerate(possible_in_channels):
for outgoing, l in enumerate(possible_out):
var = latency.Vartype(**L._asdict(), in_channels=p, out_channels=l)
pair[incoming, outgoing] = ows_state.latency[var]
pairwise.append(pair)
possible_in_channels = possible_out
ows_state.pairwise = pairwise
unaries, pairwise, states = complete(unaries, ows_state.pairwise)
def solve(gamma):
_, ipath = maxsum(unaries, -gamma * pairwise, states)
perf, timing = score(ipath, unaries, pairwise, detail=True)
return ipath, perf, timing
gamma_min = 0.0
gamma_max = 10.0
timing_max = solve(gamma_max)[2]
expanding_iterations = 0
while timing_max > args.latency_target:
expanding_iterations += 1
if expanding_iterations > 2:
logging.warning("Too many expanding loops for gamma, try adjusting gamma_max in the code")
gamma_max *= 2
timing_max = solve(gamma_max)[2]
for _ in range(args.gamma_iter):
mid_gamma = 0.5 * (gamma_min + gamma_max)
timing_middle = solve(mid_gamma)[2]
if timing_middle > args.latency_target:
gamma_min = mid_gamma
else:
gamma_max = mid_gamma
ipath, perf, timing = solve(gamma_max)
T = np.inf
if args.AOWS and epoch >= args.AOWS_warmup and not eval_only:
T = aows_temp(epoch, len_epoch, iteration, args)
marginals = sumprod_log(unaries / T, -gamma_max * pairwise / T, states)
assert marginals.shape[0] == len(model.filters) + 2, "{} {}".format(marginals.shape[0], len(model.filters))
for F, marginal in zip(model.filters, marginals[1:-1]):
F.probability = marginal[:len(F.configurations)]
best_path = tuple(F.configurations[i] for (F, i) in zip(model.filters, ipath[1:-1]))
return best_path, T, gamma_max, perf, timing
def save_checkpoint(state, expname=''):
filename = f"checkpoint{state['epoch']:03d}.pth"
if expname:
os.makedirs(expname, exist_ok=True)
filename = osp.join(expname, filename)
torch.save(state, filename)
return filename
if __name__ == '__main__':
logger = logging.getLogger(__file__)
logging.basicConfig(stream=sys.stderr, level=logging.DEBUG,
format='%(name)s: %(message)s')
main()