|
| 1 | +/* |
| 2 | + * Copyright Nick Thompson, 2024 |
| 3 | + * Use, modification and distribution are subject to the |
| 4 | + * Boost Software License, Version 1.0. (See accompanying file |
| 5 | + * LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) |
| 6 | + */ |
| 7 | +#include <vector> |
| 8 | +#include <iostream> |
| 9 | +#include <list> |
| 10 | +#include <random> |
| 11 | +#include <cmath> |
| 12 | +#include <complex> |
| 13 | +#include <utility> |
| 14 | +#include <limits> |
| 15 | +#include <algorithm> |
| 16 | +#include <boost/math/tools/polynomial.hpp> |
| 17 | +using boost::math::tools::polynomial; |
| 18 | +#ifdef BOOST_HAS_FLOAT128 |
| 19 | +#include <boost/multiprecision/float128.hpp> |
| 20 | +using boost::multiprecision::float128; |
| 21 | +#endif |
| 22 | +#include <boost/multiprecision/cpp_bin_float.hpp> |
| 23 | +#include "math_unit_test.hpp" |
| 24 | + |
| 25 | +#if __has_include(<Eigen/Eigenvalues>) |
| 26 | + |
| 27 | +void test_random_coefficients() { |
| 28 | + std::random_device rd; |
| 29 | + uint32_t seed = rd(); |
| 30 | + std::mt19937_64 mt(seed); |
| 31 | + std::uniform_real_distribution<double> unif(-1, 1); |
| 32 | + std::size_t n = seed % 3 + 3; |
| 33 | + std::vector<double> coeffs(n, std::numeric_limits<double>::quiet_NaN()); |
| 34 | + for (std::size_t i = 0; i < coeffs.size(); ++i) { |
| 35 | + coeffs[i] = unif(mt); |
| 36 | + } |
| 37 | + coeffs[coeffs.size() -1] = 1.0; |
| 38 | + auto p = polynomial(std::move(coeffs)); |
| 39 | + auto roots = p.roots(); |
| 40 | + CHECK_EQUAL(roots.size(), p.size() - 1); |
| 41 | + std::complex<double> root_product = -1; |
| 42 | + std::complex<double> root_sum = 0.0; |
| 43 | + for (auto const & root : roots) { |
| 44 | + root_product *= static_cast<std::complex<double>>(root); |
| 45 | + root_sum += static_cast<std::complex<double>>(root); |
| 46 | + } |
| 47 | + if (p.size() & 1) { |
| 48 | + root_product *= -1; |
| 49 | + } |
| 50 | + CHECK_ULP_CLOSE(root_product.real(), p[0], 1000); |
| 51 | + CHECK_LE(root_product.imag(), 1e-6); |
| 52 | + |
| 53 | + CHECK_LE(root_sum.imag(), 1e-7); |
| 54 | + CHECK_ULP_CLOSE(root_sum.real(), -p[p.size() - 2], 1000); |
| 55 | +} |
| 56 | + |
| 57 | + |
| 58 | + |
| 59 | +void test_wilkinson_polynomial() { |
| 60 | + // CoefficientList[Expand[(x - 1)*(x - 2)*(x - 3)*(x - 4)*(x - 5)*(x - 6)*(x - 7)*(x - 8)*(x - 9)*(x - 10)], x] |
| 61 | + std::vector<float> coeffs{3628800.0, -10628640.0, 12753576.0, -8409500.0, 3416930.0, -902055.0, 157773.0, -18150.0, 1320.0, -55.0 ,1.0}; |
| 62 | + auto p = polynomial(std::move(coeffs)); |
| 63 | + auto roots = p.roots(); |
| 64 | + CHECK_EQUAL(roots.size(), p.size() - 1); |
| 65 | + std::complex<double> root_product = -1; |
| 66 | + std::complex<double> root_sum = 0.0; |
| 67 | + for (auto const & root : roots) { |
| 68 | + root_product *= static_cast<std::complex<double>>(root); |
| 69 | + root_sum += static_cast<std::complex<double>>(root); |
| 70 | + } |
| 71 | + if (p.size() & 1) { |
| 72 | + root_product *= -1; |
| 73 | + } |
| 74 | + CHECK_ABSOLUTE_ERROR(root_product.real(), double(p[0]), double(1e-3*p[0])); |
| 75 | + CHECK_LE(root_product.imag(), 1e-8); |
| 76 | + |
| 77 | + CHECK_LE(root_sum.imag(), 1e-8); |
| 78 | + CHECK_ABSOLUTE_ERROR(root_sum.real(), -double(p[p.size() - 2]), 1e-5); |
| 79 | + |
| 80 | + std::complex<double> c = 0.0; |
| 81 | + for (std::size_t i = 0; i < roots.size(); ++i) { |
| 82 | + auto ri = static_cast<std::complex<double>>(roots[i]); |
| 83 | + for (std::size_t j = i + 1; j < roots.size(); ++j) { |
| 84 | + c += ri*static_cast<std::complex<double>>(roots[j]); |
| 85 | + } |
| 86 | + } |
| 87 | + CHECK_ULP_CLOSE(p[p.size()-3], static_cast<float>(c.real()), 10); |
| 88 | + CHECK_ABSOLUTE_ERROR(0.0, c.imag(), 1e-8); |
| 89 | + |
| 90 | +} |
| 91 | + |
| 92 | +template<typename T> |
| 93 | +void test_singular_companion() |
| 94 | +{ |
| 95 | + std::vector<T> coeffs{0.0, 0.0, 1.0}; |
| 96 | + auto p = polynomial(std::move(coeffs)); |
| 97 | + auto roots = p.roots(); |
| 98 | + CHECK_EQUAL(roots.size(), p.size() - 1); |
| 99 | + for (std::size_t i = 0; i < roots.size() - 1; ++i) { |
| 100 | + CHECK_ABSOLUTE_ERROR(T(0), roots[i].real(), std::numeric_limits<T>::epsilon()); |
| 101 | + CHECK_ABSOLUTE_ERROR(T(0), roots[i].imag(), std::numeric_limits<T>::epsilon()); |
| 102 | + } |
| 103 | +} |
| 104 | + |
| 105 | + |
| 106 | +int main() |
| 107 | +{ |
| 108 | + test_random_coefficients(); |
| 109 | + test_singular_companion<float>(); |
| 110 | + test_singular_companion<double>(); |
| 111 | +#if BOOST_HAS_FLOAT128 |
| 112 | + test_singular_companion<float128>(); |
| 113 | +#endif |
| 114 | + test_singular_companion<boost::multiprecision::cpp_bin_float_100>(); |
| 115 | + test_wilkinson_polynomial(); |
| 116 | + return boost::math::test::report_errors(); |
| 117 | +} |
| 118 | +#endif |
0 commit comments