Skip to content

Commit ebc1f48

Browse files
committed
Polynomial roots via eigenvalues of the companion matrix
1 parent a53b013 commit ebc1f48

File tree

3 files changed

+191
-2
lines changed

3 files changed

+191
-2
lines changed

doc/internals/polynomial.qbk

+9-2
Original file line numberDiff line numberDiff line change
@@ -48,7 +48,8 @@
4848

4949
T operator()(T z) const;
5050

51-
51+
// Only available if Eigen library is available:
52+
std::vector<std::complex<T>> roots() const;
5253

5354
// modify:
5455
void set_zero();
@@ -183,11 +184,17 @@ for output
183184

184185
The source code is at [@../../example/polynomial_arithmetic.cpp polynomial_arithmetic.cpp]
185186

186-
[endsect] [/section:polynomials Polynomials]
187+
Polynomial roots are recovered by the eigenvalues of the companion matrix.
188+
This requires that the Eigen C++ library to be available; otherwise calling `.roots()` is a compile-time error.
189+
190+
[endsect]
191+
192+
[/section:polynomials Polynomials]
187193

188194
[/
189195
Copyright 2006 John Maddock and Paul A. Bristow.
190196
Copyright 2015 Jeremy William Murphy.
197+
Copyright 2024 Nick Thompson.
191198

192199
Distributed under the Boost Software License, Version 1.0.
193200
(See accompanying file LICENSE_1_0.txt or copy at

include/boost/math/tools/polynomial.hpp

+66
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,6 @@
11
// (C) Copyright John Maddock 2006.
22
// (C) Copyright Jeremy William Murphy 2015.
3+
// (C) Copyright Nick Thompson 2024.
34

45

56
// Use, modification and distribution are subject to the
@@ -29,6 +30,10 @@
2930
#include <type_traits>
3031
#include <iterator>
3132

33+
#if __has_include(<Eigen/Eigenvalues>)
34+
#include <Eigen/Eigenvalues>
35+
#endif
36+
3237
namespace boost{ namespace math{ namespace tools{
3338

3439
template <class T>
@@ -575,6 +580,67 @@ class polynomial
575580
m_data.erase(std::find_if(m_data.rbegin(), m_data.rend(), [](const T& x)->bool { return x != T(0); }).base(), m_data.end());
576581
}
577582

583+
#if __has_include(<Eigen/Eigenvalues>)
584+
/*
585+
* Polynomial root recovery by the eigenvalues of the companion matrix.
586+
* N.B.: This algorithm is not the state of the art; a faster algorithm is
587+
* "Fast and backward stable computation of roots of polynomials" by Aurentz et al.
588+
*/
589+
[[nodiscard]] auto roots() const {
590+
// At least as of Eigen 3.4.0, we cannot provide the eigensolver with complex numbers.
591+
// Hence this static assert:
592+
static_assert(std::is_floating_point<T>::value, "Must be a floating-point type to recover the roots");
593+
using std::complex;
594+
using Complex = complex<T>;
595+
if (m_data.size() == 1) {
596+
return std::vector<Complex>();
597+
}
598+
// There is a temptation to split off the linear and quadratic case, since
599+
// they are so easy. Resist the temptation! Your best unit tests will become
600+
// tautological.
601+
std::size_t n = m_data.size() - 1;
602+
Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic> C(n, n);
603+
C << Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>::Zero(n,n);
604+
for (std::size_t i = 0; i < n; ++i) {
605+
// Remember the class invariant m_data.back() != 0 from the normalize() call?
606+
// Reaping blessings right here y'all:
607+
C(i, n - 1) = -m_data[i] / m_data.back();
608+
}
609+
for (std::size_t i = 0; i < n - 1; ++i) {
610+
C(i + 1, i) = 1;
611+
}
612+
Eigen::EigenSolver<decltype(C)> es;
613+
es.compute(C, /*computeEigenvectors=*/ false);
614+
auto info = es.info();
615+
if (info != Eigen::ComputationInfo::Success) {
616+
std::ostringstream oss;
617+
oss << __FILE__ << ":" << __LINE__ << ":" << __func__ << ": Eigen's eigensolver did not succeed.";
618+
switch (info) {
619+
case Eigen::ComputationInfo::NumericalIssue:
620+
oss << " Problem: numerical issue.";
621+
break;
622+
case Eigen::ComputationInfo::NoConvergence:
623+
oss << " Problem: no convergence.";
624+
break;
625+
case Eigen::ComputationInfo::InvalidInput:
626+
oss << " Problem: Invalid input.";
627+
break;
628+
default:
629+
oss << " Problem: Unknown.";
630+
}
631+
BOOST_MATH_THROW_EXCEPTION(std::runtime_error(oss.str()));
632+
}
633+
// Don't want to expose Eigen types to the rest of the world;
634+
// Eigen is a detail of this algorithm, so big sad copy:
635+
auto eigen_zeros = es.eigenvalues();
636+
std::vector<Complex> zeros(eigen_zeros.size());
637+
for (std::size_t i = 0; i < zeros.size(); ++i) {
638+
zeros[i] = eigen_zeros[i];
639+
}
640+
return zeros;
641+
}
642+
#endif
643+
578644
private:
579645
template <class U, class R>
580646
polynomial& addition(const U& value, R op)

test/polynomial_roots_test.cpp

+116
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,116 @@
1+
/*
2+
* Copyright Nick Thompson, 2024
3+
* Use, modification and distribution are subject to the
4+
* Boost Software License, Version 1.0. (See accompanying file
5+
* LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
6+
*/
7+
#include <vector>
8+
#include <iostream>
9+
#include <list>
10+
#include <random>
11+
#include <cmath>
12+
#include <complex>
13+
#include <utility>
14+
#include <limits>
15+
#include <algorithm>
16+
#include <boost/math/tools/polynomial.hpp>
17+
using boost::math::tools::polynomial;
18+
#ifdef BOOST_HAS_FLOAT128
19+
#include <boost/multiprecision/float128.hpp>
20+
using boost::multiprecision::float128;
21+
#endif
22+
#include "math_unit_test.hpp"
23+
24+
#if __has_include(<Eigen/Eigenvalues>)
25+
26+
void test_random_coefficients() {
27+
std::random_device rd;
28+
uint32_t seed = rd();
29+
std::mt19937_64 mt(seed);
30+
std::uniform_real_distribution<double> unif(-1, 1);
31+
std::size_t n = seed % 3 + 3;
32+
std::vector<double> coeffs(n, std::numeric_limits<double>::quiet_NaN());
33+
for (std::size_t i = 0; i < coeffs.size(); ++i) {
34+
coeffs[i] = unif(mt);
35+
}
36+
coeffs[coeffs.size() -1] = 1.0;
37+
auto p = polynomial(std::move(coeffs));
38+
auto roots = p.roots();
39+
CHECK_EQUAL(roots.size(), p.size() - 1);
40+
std::complex<double> root_product = -1;
41+
std::complex<double> root_sum = 0.0;
42+
for (auto const & root : roots) {
43+
root_product *= static_cast<std::complex<double>>(root);
44+
root_sum += static_cast<std::complex<double>>(root);
45+
}
46+
if (p.size() & 1) {
47+
root_product *= -1;
48+
}
49+
CHECK_ULP_CLOSE(root_product.real(), p[0], 1000);
50+
CHECK_LE(root_product.imag(), 1e-6);
51+
52+
CHECK_LE(root_sum.imag(), 1e-7);
53+
CHECK_ULP_CLOSE(root_sum.real(), -p[p.size() - 2], 1000);
54+
}
55+
56+
57+
58+
void test_wilkinson_polynomial() {
59+
// CoefficientList[Expand[(x - 1)*(x - 2)*(x - 3)*(x - 4)*(x - 5)*(x - 6)*(x - 7)*(x - 8)*(x - 9)*(x - 10)], x]
60+
std::vector<float> coeffs{3628800.0, -10628640.0, 12753576.0, -8409500.0, 3416930.0, -902055.0, 157773.0, -18150.0, 1320.0, -55.0 ,1.0};
61+
auto p = polynomial(std::move(coeffs));
62+
auto roots = p.roots();
63+
CHECK_EQUAL(roots.size(), p.size() - 1);
64+
std::complex<double> root_product = -1;
65+
std::complex<double> root_sum = 0.0;
66+
for (auto const & root : roots) {
67+
root_product *= static_cast<std::complex<double>>(root);
68+
root_sum += static_cast<std::complex<double>>(root);
69+
}
70+
if (p.size() & 1) {
71+
root_product *= -1;
72+
}
73+
CHECK_ABSOLUTE_ERROR(root_product.real(), double(p[0]), double(1e-3*p[0]));
74+
CHECK_LE(root_product.imag(), 1e-8);
75+
76+
CHECK_LE(root_sum.imag(), 1e-8);
77+
CHECK_ABSOLUTE_ERROR(root_sum.real(), -double(p[p.size() - 2]), 1e-5);
78+
79+
std::complex<double> c = 0.0;
80+
for (std::size_t i = 0; i < roots.size(); ++i) {
81+
auto ri = static_cast<std::complex<double>>(roots[i]);
82+
for (std::size_t j = i + 1; j < roots.size(); ++j) {
83+
c += ri*static_cast<std::complex<double>>(roots[j]);
84+
}
85+
}
86+
CHECK_ULP_CLOSE(p[p.size()-3], static_cast<float>(c.real()), 10);
87+
CHECK_ABSOLUTE_ERROR(0.0, c.imag(), 1e-8);
88+
89+
}
90+
91+
template<typename T>
92+
void test_singular_companion()
93+
{
94+
std::vector<T> coeffs{0.0, 0.0, 1.0};
95+
auto p = polynomial(std::move(coeffs));
96+
auto roots = p.roots();
97+
CHECK_EQUAL(roots.size(), p.size() - 1);
98+
for (std::size_t i = 0; i < roots.size() - 1; ++i) {
99+
CHECK_ABSOLUTE_ERROR(T(0), roots[i].real(), std::numeric_limits<T>::epsilon());
100+
CHECK_ABSOLUTE_ERROR(T(0), roots[i].imag(), std::numeric_limits<T>::epsilon());
101+
}
102+
}
103+
104+
105+
int main()
106+
{
107+
test_random_coefficients();
108+
test_singular_companion<float>();
109+
test_singular_companion<double>();
110+
#if BOOST_HAS_FLOAT128
111+
test_singular_companion<float128>();
112+
#endif
113+
test_wilkinson_polynomial();
114+
return boost::math::test::report_errors();
115+
}
116+
#endif

0 commit comments

Comments
 (0)