-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAOloopControl_computeCalib_CM.c
753 lines (572 loc) · 22 KB
/
AOloopControl_computeCalib_CM.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
/**
* @file AOloopControl_computeCalib_CM.c
* @brief Adaptive Optics Control loop engine compute calibration
*
* AO engine uses stream data structure
*
* @author O. Guyon
* @date 28 Dec 2017
*
*
* @bug No known bugs.
*
*
*/
#define _GNU_SOURCE
// uncomment for test print statements to stdout
//#define _PRINT_TEST
/* =============================================================================================== */
/* =============================================================================================== */
/* HEADER FILES */
/* =============================================================================================== */
/* =============================================================================================== */
#include <math.h>
#include <stdint.h>
#include <unistd.h>
#include <malloc.h>
#include <stdio.h>
#include <string.h>
#include <sys/stat.h>
#include <pthread.h>
#ifdef __MACH__
#include <mach/mach_time.h>
#define CLOCK_REALTIME 0
#define CLOCK_MONOTONIC 0
int clock_gettime(int clk_id, struct mach_timespec *t) {
mach_timebase_info_data_t timebase;
mach_timebase_info(&timebase);
uint64_t time;
time = mach_absolute_time();
double nseconds = ((double)time * (double)timebase.numer)/((double)timebase.denom);
double seconds = ((double)time * (double)timebase.numer)/((double)timebase.denom * 1e9);
t->tv_sec = seconds;
t->tv_nsec = nseconds;
return 0;
}
#else
#include <time.h>
#endif
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_eigen.h>
#include <gsl/gsl_blas.h>
#include <fitsio.h>
#include "CommandLineInterface/CLIcore.h"
#include "00CORE/00CORE.h"
#include "COREMOD_memory/COREMOD_memory.h"
#include "COREMOD_iofits/COREMOD_iofits.h"
#include "COREMOD_tools/COREMOD_tools.h"
#include "COREMOD_arith/COREMOD_arith.h"
#include "info/info.h"
#include "linopt_imtools/linopt_imtools.h"
#include "statistic/statistic.h"
#include "ZernikePolyn/ZernikePolyn.h"
#include "image_filter/image_filter.h"
#include "AOloopControl/AOloopControl.h"
#include "AOloopControl_IOtools/AOloopControl_IOtools.h"
#include "AOloopControl_acquireCalib/AOloopControl_acquireCalib.h"
#include "AOloopControl_computeCalib/AOloopControl_computeCalib.h"
#ifdef HAVE_CUDA
#include "cudacomp/cudacomp.h"
#endif
extern long LOOPNUMBER; // current loop index
extern AOLOOPCONTROL_CONF *AOconf; // declared in AOloopControl.c
extern AOloopControl_var aoloopcontrol_var; // declared in AOloopControl.c
long aoconfID_imWFS2_active[100];
#define MAX_MBLOCK 20
/** \brief Computes control matrix using SVD
*
* Conventions:
* m: number of actuators (= NB_MODES);
* n: number of sensors (= # of pixels)
* works even for m != n
*
*
*
*/
int_fast8_t AOloopControl_computeCalib_compute_ControlMatrix(long loop, long NB_MODE_REMOVED, const char *ID_Rmatrix_name, const char *ID_Cmatrix_name, const char *ID_VTmatrix_name, double Beta, long NB_MODE_REMOVED_STEP, float eigenvlim)
{
FILE *fp;
long ii1, jj1, k, ii;
gsl_matrix *matrix_D; /* this is the response matrix */
gsl_matrix *matrix_Ds; /* this is the pseudo inverse of D */
gsl_matrix *matrix_Dtra;
gsl_matrix *matrix_DtraD;
gsl_matrix *matrix_DtraDinv;
gsl_matrix *matrix_DtraD_evec;
gsl_matrix *matrix1;
gsl_matrix *matrix2;
gsl_vector *matrix_DtraD_eval;
gsl_eigen_symmv_workspace *w;
gsl_matrix *matrix_save;
long m;
long n;
long ID_Rmatrix, ID_Cmatrix, ID_VTmatrix;
uint32_t *arraysizetmp;
long IDmodes;
long IDeigenmodesResp;
long kk, kk1;
long ID_RMmask;
double *CPAcoeff; /// gain applied to modes to enhance low orders in SVD
char fname[200];
long NB_MR; /// number of modes removed
long NB_MODE_REMOVED1;
float eigenvmin=0.0;
long NBMODES_REMOVED_EIGENVLIM = 0;
long MB_MR_start;
long MB_MR_end;
long MB_MR_step;
int ret;
char command[200];
if(aoloopcontrol_var.AOloopcontrol_meminit==0)
AOloopControl_InitializeMemory(1);
arraysizetmp = (uint32_t*) malloc(sizeof(uint32_t)*3);
ID_Rmatrix = image_ID(ID_Rmatrix_name);
n = data.image[ID_Rmatrix].md[0].size[0]*data.image[ID_Rmatrix].md[0].size[1]; //AOconf[loop].AOpmodecoeffs.NBDMmodes;
m = data.image[ID_Rmatrix].md[0].size[2]; //AOconf[loop].WFSim.sizeWFS;
ID_RMmask = image_ID("RMmask");
if(ID_RMmask!=-1) // apply mask to response matrix
{
for(kk=0; kk<m; kk++)
{
for(ii=0; ii<n; ii++)
data.image[ID_Rmatrix].array.F[kk*n+ii] *= data.image[ID_RMmask].array.F[ii];
}
}
/** in this procedure, m=number of actuators/modes, n=number of WFS elements */
// long m = smao[0].NBmode;
// long n = smao[0].NBwfselem;
printf("m = %ld actuators (modes), n = %ld sensors\n", m, n);
fflush(stdout);
NB_MODE_REMOVED1 = m-1;
matrix_DtraD_eval = gsl_vector_alloc (m);
matrix_D = gsl_matrix_alloc (n,m);
matrix_Ds = gsl_matrix_alloc (m,n);
matrix_Dtra = gsl_matrix_alloc (m,n);
matrix_DtraD = gsl_matrix_alloc (m,m);
matrix_DtraDinv = gsl_matrix_alloc (m,m);
matrix_DtraD_evec = gsl_matrix_alloc (m,m);
CPAcoeff = (double*) malloc(sizeof(double)*m);
if(Beta>0.000001)
{
long ID = load_fits("modesfreqcpa.fits", "modesfreqcpa", 1);
if(ID==-1)
{
for(k=0; k<m; k++)
CPAcoeff[k] = 1.0;
}
else
{
for(k=0; k<m; k++)
{
CPAcoeff[k] = exp(-data.image[ID].array.F[k]*Beta);
printf("%5ld %5.3f %g\n", k, data.image[ID].array.F[k], CPAcoeff[k]);
}
}
}
else
{
for(k=0; k<m; k++)
CPAcoeff[k] = 1.0;
}
/* write matrix_D */
for(k=0; k<m; k++)
{
for(ii=0; ii<n; ii++)
gsl_matrix_set (matrix_D, ii, k, data.image[ID_Rmatrix].array.F[k*n+ii]*CPAcoeff[k]);
}
/* compute DtraD */
gsl_blas_dgemm (CblasTrans, CblasNoTrans, 1.0, matrix_D, matrix_D, 0.0, matrix_DtraD);
/* compute the inverse of DtraD */
/* first, compute the eigenvalues and eigenvectors */
w = gsl_eigen_symmv_alloc (m);
matrix_save = gsl_matrix_alloc (m,m);
gsl_matrix_memcpy(matrix_save, matrix_DtraD);
gsl_eigen_symmv (matrix_save, matrix_DtraD_eval, matrix_DtraD_evec, w);
gsl_matrix_free(matrix_save);
gsl_eigen_symmv_free(w);
gsl_eigen_symmv_sort (matrix_DtraD_eval, matrix_DtraD_evec, GSL_EIGEN_SORT_ABS_DESC);
printf("Eigenvalues\n");
fflush(stdout);
// Write eigenvalues
if((fp=fopen("eigenv.dat","w"))==NULL)
{
printf("ERROR: cannot create file \"eigenv.dat\"\n");
exit(0);
}
for(k=0; k<m; k++)
fprintf(fp,"%ld %g\n", k, gsl_vector_get(matrix_DtraD_eval,k));
fclose(fp);
eigenvmin = eigenvlim*gsl_vector_get(matrix_DtraD_eval,0);
NBMODES_REMOVED_EIGENVLIM = 0;
for(k=0; k<m; k++)
{
printf("Mode %ld eigenvalue = %g\n", k, gsl_vector_get(matrix_DtraD_eval,k));
if(gsl_vector_get(matrix_DtraD_eval,k) < eigenvmin)
NBMODES_REMOVED_EIGENVLIM++;
}
/** Write rotation matrix to go from DM modes to eigenmodes */
arraysizetmp[0] = m;
arraysizetmp[1] = m;
ID_VTmatrix = create_image_ID(ID_VTmatrix_name, 2, arraysizetmp, _DATATYPE_FLOAT, 0, 0);
for(ii=0; ii<m; ii++) // modes
for(k=0; k<m; k++) // modes
data.image[ID_VTmatrix].array.F[k*m+ii] = (float) gsl_matrix_get( matrix_DtraD_evec, k, ii);
/// Compute eigenmodes responses
IDeigenmodesResp = create_3Dimage_ID("eigenmodesrespM", data.image[ID_Rmatrix].md[0].size[0], data.image[ID_Rmatrix].md[0].size[1], data.image[ID_Rmatrix].md[0].size[2]);
printf("Computing eigenmode responses .... \n");
for(kk=0; kk<m; kk++) /// eigen mode index
{
printf("\r eigenmode %4ld / %4ld ", kk, m);
fflush(stdout);
for(kk1=0; kk1<m; kk1++)
{
for(ii=0; ii<n; ii++)
data.image[IDeigenmodesResp].array.F[kk*n + ii] += data.image[ID_VTmatrix].array.F[kk1*m+kk]*data.image[ID_Rmatrix].array.F[kk1*n + ii];
}
}
if(sprintf(fname, "!eigenmodesrespM_%4.2f.fits", Beta) < 1)
printERROR(__FILE__, __func__, __LINE__, "sprintf wrote <1 char");
save_fits("eigenmodesrespM", fname);
printf("\n");
/// if modesM exists, compute eigenmodes using rotation matrix
IDmodes = image_ID("modesM");
if(IDmodes!=-1)
{
uint32_t xsize_modes, ysize_modes, zsize_modes;
xsize_modes = data.image[IDmodes].md[0].size[0];
ysize_modes = data.image[IDmodes].md[0].size[1];
zsize_modes = data.image[IDmodes].md[0].size[2];
if(zsize_modes != m)
printf("ERROR: zsize (%ld) of modesM does not match expected size (%ld)\n", (long) zsize_modes, (long) m);
else
{
long IDeigenmodes = create_3Dimage_ID("eigenmodesM", xsize_modes, ysize_modes, m);
printf("Computing eigenmodes .... \n");
for(kk=0; kk<m; kk++) /// eigen mode index
{
printf("\r eigenmode %4ld / %4ld ", kk, m);
fflush(stdout);
for(kk1=0; kk1<m; kk1++)
{
for(ii=0; ii<xsize_modes*ysize_modes; ii++)
data.image[IDeigenmodes].array.F[kk*xsize_modes*ysize_modes + ii] += data.image[ID_VTmatrix].array.F[kk1*m+kk]*data.image[IDmodes].array.F[kk1*xsize_modes*ysize_modes + ii];
}
}
printf("\n");
}
if(sprintf(fname, "!eigenmodesM_%4.2f.fits", Beta) < 1)
printERROR(__FILE__, __func__, __LINE__, "sprintf wrote <1 char");
save_fits("eigenmodesM", fname);
}
/// second, build the "inverse" of the diagonal matrix of eigenvalues (matrix1)
matrix1 = gsl_matrix_alloc (m, m);
matrix2 = gsl_matrix_alloc (m, m);
arraysizetmp[0] = AOconf[loop].WFSim.sizexWFS;
arraysizetmp[1] = AOconf[loop].WFSim.sizeyWFS;
arraysizetmp[2] = m;
ID_Cmatrix = create_image_ID(ID_Cmatrix_name, 3, arraysizetmp, _DATATYPE_FLOAT, 0, 0);
printf("COMPUTING CMAT .... \n");
if(NB_MODE_REMOVED_STEP==0)
{
MB_MR_start = NBMODES_REMOVED_EIGENVLIM;
MB_MR_end = NBMODES_REMOVED_EIGENVLIM+1;
MB_MR_step = 10;
}
else
{
MB_MR_start = 0;
MB_MR_end = NB_MODE_REMOVED1;
MB_MR_step = NB_MODE_REMOVED_STEP;
}
for(NB_MR=MB_MR_start; NB_MR<MB_MR_end; NB_MR+=MB_MR_step)
{
printf("\r Number of modes removed : %5ld / %5ld (step %ld) ", NB_MR, NB_MODE_REMOVED1, NB_MODE_REMOVED_STEP);
fflush(stdout);
for(ii1=0; ii1<m; ii1++)
for(jj1=0; jj1<m; jj1++)
{
if(ii1==jj1)
{
if((m-ii1-1)<NB_MR)
gsl_matrix_set(matrix1, ii1, jj1, 0.0);
else
gsl_matrix_set(matrix1, ii1, jj1, 1.0/gsl_vector_get(matrix_DtraD_eval,ii1));
}
else
gsl_matrix_set(matrix1, ii1, jj1, 0.0);
}
/* third, compute the "inverse" of DtraD */
gsl_blas_dgemm (CblasNoTrans, CblasNoTrans, 1.0, matrix_DtraD_evec, matrix1, 0.0, matrix2);
gsl_blas_dgemm (CblasNoTrans, CblasTrans, 1.0, matrix2, matrix_DtraD_evec, 0.0, matrix_DtraDinv);
gsl_blas_dgemm (CblasNoTrans, CblasTrans, 1.0, matrix_DtraDinv, matrix_D, 0.0, matrix_Ds);
/* write result */
printf("write result to ID %ld [%ld %ld]\n", ID_Cmatrix, n, m);
fflush(stdout);
for(ii=0; ii<n; ii++) // sensors
for(k=0; k<m; k++) // actuator modes
data.image[ID_Cmatrix].array.F[k*n+ii] = (float) gsl_matrix_get(matrix_Ds, k, ii)*CPAcoeff[k];
if(NB_MODE_REMOVED_STEP==0)
{
save_fits(ID_Cmatrix_name, "!cmat.fits");
if(sprintf(command, "echo \"%ld\" > ./cmat.NB_MODES_RM.txt", NBMODES_REMOVED_EIGENVLIM) < 1)
printERROR(__FILE__, __func__, __LINE__, "sprintf wrote <1 char");
if(system(command) != 0)
printERROR(__FILE__, __func__, __LINE__, "system() returns non-zero value");
if(sprintf(command, "echo \"%ld\" > ./cmat.NB_MODES.txt", m) < 1)
printERROR(__FILE__, __func__, __LINE__, "sprintf wrote <1 char");
if(system(command) != 0)
printERROR(__FILE__, __func__, __LINE__, "system() returns non-zero value");
}
else
{
if(sprintf(fname, "!cmat_%4.2f_%02ld.fits", Beta, NB_MR) < 1)
printERROR(__FILE__, __func__, __LINE__, "sprintf wrote <1 char");
printf(" SAVING -> %s\n", fname);
fflush(stdout);
save_fits(ID_Cmatrix_name, fname);
}
}
printf("\n\n");
gsl_matrix_free(matrix1);
gsl_matrix_free(matrix2);
gsl_vector_free(matrix_DtraD_eval);
gsl_matrix_free(matrix_D);
gsl_matrix_free(matrix_Ds);
gsl_matrix_free(matrix_Dtra);
gsl_matrix_free(matrix_DtraD);
gsl_matrix_free(matrix_DtraDinv);
gsl_matrix_free(matrix_DtraD_evec);
free(arraysizetmp);
free(CPAcoeff);
return(ID_Cmatrix);
}
//
// computes combined control matrix
//
//
long AOloopControl_computeCalib_compute_CombinedControlMatrix(const char *IDcmat_name, const char *IDmodes_name, const char* IDwfsmask_name, const char *IDdmmask_name, const char *IDcmatc_name, const char *IDcmatc_active_name)
{
// long ID;
struct timespec t1;
struct timespec t2;
struct timespec tdiff;
double tdiffv;
float *matrix_cmp;
long wfselem, act, mode;
// long n_sizeDM, n_NBDMmodes, n_sizeWFS;
float *matrix_Mc, *matrix_DMmodes;
long act_active, wfselem_active;
long IDwfsmask, IDdmmask;
long sizexWFS, sizeyWFS, sizeWFS, sizeWFS_active[100];
long ii, ii1;
long sizexDM, sizeyDM;
long sizeDM_active;
uint32_t *sizearray;
long IDcmat;
long IDcmatc;
long IDmodes;
long NBDMmodes;
long sizeDM;
long IDcmatc_active[100];
char name[200];
char imname[200];
int slice;
printf("COMPUTING COMBINED CONTROL MATRIX .... \n");
fflush(stdout);
clock_gettime(CLOCK_REALTIME, &t1);
// initialize size of arrays
IDwfsmask = image_ID(IDwfsmask_name);
sizexWFS = data.image[IDwfsmask].md[0].size[0];
sizeyWFS = data.image[IDwfsmask].md[0].size[1];
sizeWFS = sizexWFS*sizeyWFS;
printf("IDwfsmask = %ld\n", IDwfsmask);
fflush(stdout);
IDdmmask = image_ID(IDdmmask_name);
sizexDM = data.image[IDdmmask].md[0].size[0];
sizeyDM = data.image[IDdmmask].md[0].size[1];
sizeDM = sizexDM*sizeyDM;
printf("IDdmmask = %ld\n", IDdmmask);
fflush(stdout);
IDmodes = image_ID(IDmodes_name);
printf("IDmodes = %ld\n", IDmodes);
fflush(stdout);
NBDMmodes = data.image[IDmodes].md[0].size[2];
// allocate array for combined matrix
sizearray = (uint32_t*) malloc(sizeof(uint32_t)*3);
sizearray[0] = sizexWFS;
sizearray[1] = sizeyWFS;
sizearray[2] = sizeDM;
printf("Creating 3D image : %ld %ld %ld\n", sizexWFS, sizeyWFS, sizeDM);
fflush(stdout);
IDcmatc = create_image_ID(IDcmatc_name, 3, sizearray, _DATATYPE_FLOAT, 0, 0);
free(sizearray);
printf("PREPARE MATRIX MULT\n");
fflush(stdout);
// init matrix_Mc
matrix_Mc = (float*) malloc(sizeof(float)*sizeWFS*sizeDM);
memcpy(matrix_Mc, data.image[IDcmatc].array.F, sizeof(float)*sizeWFS*sizeDM);
// copy modal control matrix to matrix_cmp
IDcmat = image_ID(IDcmat_name);
matrix_cmp = (float*) malloc(sizeof(float)*sizeWFS*NBDMmodes);
memcpy(matrix_cmp, data.image[IDcmat].array.F, sizeof(float)*sizeWFS*NBDMmodes);
// copy modes matrix to matrix_DMmodes
matrix_DMmodes = (float*) malloc(sizeof(float)*NBDMmodes*sizeDM);
memcpy(matrix_DMmodes, data.image[IDmodes].array.F, sizeof(float)*NBDMmodes*sizeDM);
printf("START MATRIX MULT\n");
fflush(stdout);
// computing combine matrix (full size)
//# ifdef _OPENMP
// #pragma omp parallel shared(matrix_Mc, matrix_cmp, matrix_DMmodes ,chunk) private( mode, act, wfselem)
// {
// #pragma omp for schedule (static)
//# endif
for(mode=0; mode<NBDMmodes; mode++)
{
for(act=0; act<sizeDM; act++)
{
for(wfselem=0; wfselem<sizeWFS; wfselem++)
matrix_Mc[act*sizeWFS+wfselem] += matrix_cmp[mode*sizeWFS+wfselem]*matrix_DMmodes[mode*sizeDM+act];
}
}
//# ifdef _OPENMP
// }
//# endif
memcpy(data.image[IDcmatc].array.F, matrix_Mc, sizeof(float)*sizeWFS*sizeDM);
free(matrix_cmp);
printf("REDUCE MATRIX SIZE\n");
fflush(stdout);
aoloopcontrol_var.WFS_active_map = (int*) malloc(sizeof(int)*sizeWFS*aoloopcontrol_var.PIXSTREAM_NBSLICES);
for(slice=0; slice<aoloopcontrol_var.PIXSTREAM_NBSLICES; slice++)
{
ii1 = 0;
for(ii=0; ii<sizeWFS; ii++)
if(data.image[IDwfsmask].array.F[ii]>0.1)
{
if(slice==0)
{
aoloopcontrol_var.WFS_active_map[ii1] = ii;
ii1++;
}
else
{
if(data.image[aoloopcontrol_var.aoconfID_pixstream_wfspixindex].array.UI16[ii]==slice+1)
{
aoloopcontrol_var.WFS_active_map[slice*sizeWFS+ii1] = ii;
ii1++;
}
}
}
sizeWFS_active[slice] = ii1;
if(sprintf(imname, "aol%ld_imWFS2active_%02d", LOOPNUMBER, slice) < 1)
printERROR(__FILE__, __func__, __LINE__, "sprintf wrote <1 char");
/* CAN CRASH
sizearray = (long*) malloc(sizeof(long)*2);
sizearray[0] = sizeWFS_active[slice];
sizearray[1] = 1;
aoconfID_imWFS2_active[slice] = create_image_ID(imname, 2, sizearray, FLOAT, 1, 0);
free(sizearray);
*/
}
aoloopcontrol_var.DM_active_map = (int*) malloc(sizeof(int)*sizeDM);
ii1 = 0;
for(ii=0; ii<sizeDM; ii++)
if(data.image[IDdmmask].array.F[ii]>0.1)
{
aoloopcontrol_var.DM_active_map[ii1] = ii;
ii1++;
}
sizeDM_active = ii1;
// aoconfID_meas_act_active = create_2Dimage_ID("meas_act_active", sizeDM_active, 1);
/* CAN CRASH
sizearray = (long*) malloc(sizeof(long)*2);
sizearray[0] = sizeDM_active;
sizearray[1] = 1;
sprintf(name, "aol%ld_meas_act_active", LOOPNUMBER);
aoconfID_meas_act_active = create_image_ID(name, 2, sizearray, FLOAT, 1, 0);
free(sizearray);
*/
// reduce matrix size to active elements
for(slice=0; slice<aoloopcontrol_var.PIXSTREAM_NBSLICES; slice++)
{
if(sprintf(imname, "%s_%02d", IDcmatc_active_name, slice) < 1)
printERROR(__FILE__, __func__, __LINE__, "sprintf wrote <1 char");
IDcmatc_active[slice] = create_2Dimage_ID(imname, sizeWFS_active[slice], sizeDM_active);
for(act_active=0; act_active<sizeDM_active; act_active++)
{
for(wfselem_active=0; wfselem_active<sizeWFS_active[slice]; wfselem_active++)
{
act = aoloopcontrol_var.DM_active_map[act_active];
wfselem = aoloopcontrol_var.WFS_active_map[slice*sizeWFS+wfselem_active];
data.image[IDcmatc_active[slice]].array.F[act_active*sizeWFS_active[slice]+wfselem_active] = matrix_Mc[act*sizeWFS+wfselem];
}
}
printf("PIXEL SLICE %d Keeping only active pixels / actuators : %ld x %ld -> %ld x %ld\n", slice, sizeWFS, sizeDM, sizeWFS_active[slice], sizeDM_active);
}
free(matrix_Mc);
free(matrix_DMmodes);
clock_gettime(CLOCK_REALTIME, &t2);
tdiff = info_time_diff(t1, t2);
tdiffv = 1.0*tdiff.tv_sec + 1.0e-9*tdiff.tv_nsec;
printf("\n");
printf("TIME TO COMPUTE MATRIX = %f sec\n", tdiffv);
return(0);
}
long AOloopControl_computeCalib_loadCM(long loop, const char *CMfname)
{
long ID = -1;
if(aoloopcontrol_var.AOloopcontrol_meminit==0)
AOloopControl_InitializeMemory(0);
if( (ID = load_fits(CMfname, "tmpcontrM", 1)) != -1 )
{
// check size is OK
int vOK = 1;
if(data.image[ID].md[0].naxis!=3)
{
printf("Control matrix has wrong dimension\n");
vOK = 0;
}
if(data.image[ID].md[0].datatype!=_DATATYPE_FLOAT)
{
printf("Control matrix has wrong type\n");
vOK = 0;
}
if(vOK==1)
{
if(data.image[ID].md[0].size[0]!=AOconf[loop].WFSim.sizexWFS)
{
printf("Control matrix has wrong x size : is %ld, should be %ld\n", (long) data.image[ID].md[0].size[0], (long) AOconf[loop].WFSim.sizexWFS);
vOK = 0;
}
if(data.image[ID].md[0].size[1]!=AOconf[loop].WFSim.sizeyWFS)
{
printf("Control matrix has wrong y size\n");
vOK = 0;
}
if(data.image[ID].md[0].size[2]!=AOconf[loop].AOpmodecoeffs.NBDMmodes)
{
printf("Control matrix has wrong z size\n");
vOK = 0;
}
}
if(vOK==1)
{
AOconf[loop].aorun.init_CM = 1;
char name[200];
if(sprintf(name, "ContrM_%ld", loop) < 1)
printERROR(__FILE__, __func__, __LINE__, "sprintf wrote <1 char");
ID = image_ID(name);
if(ID==-1)
ID = read_sharedmem_image(name);
long ID0 = image_ID("tmpcontrM");
data.image[ID].md[0].write = 1;
long ii;
for(ii=0; ii<AOconf[loop].WFSim.sizexWFS*AOconf[loop].WFSim.sizeyWFS*AOconf[loop].AOpmodecoeffs.NBDMmodes; ii++)
data.image[ID].array.F[ii] = data.image[ID0].array.F[ii];
data.image[ID].md[0].write = 0;
data.image[ID].md[0].cnt0++;
}
delete_image_ID("tmpcontrM");
}
return(ID);
}