-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAOloopControl_computeCalib_Hadamard.c
248 lines (180 loc) · 6.64 KB
/
AOloopControl_computeCalib_Hadamard.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
/**
* @file AOloopControl_computeCalib_Hadamard.c
* @brief Adaptive Optics Control loop engine compute calibration
*
* AO engine uses stream data structure
*
* @author O. Guyon
* @date 26 Dec 2017
*
*
* @bug No known bugs.
*
*
*/
#define _GNU_SOURCE
// uncomment for test print statements to stdout
//#define _PRINT_TEST
/* =============================================================================================== */
/* =============================================================================================== */
/* HEADER FILES */
/* =============================================================================================== */
/* =============================================================================================== */
#include "CommandLineInterface/CLIcore.h"
#include "COREMOD_memory/COREMOD_memory.h"
#include "COREMOD_iofits/COREMOD_iofits.h"
/* =============================================================================================== */
/* =============================================================================================== */
/* DEFINES, MACROS */
/* =============================================================================================== */
/* =============================================================================================== */
#define MAX_MBLOCK 20
# ifdef _OPENMP
# include <omp.h>
#define OMP_NELEMENT_LIMIT 1000000
# endif
/* =============================================================================================== */
/* =============================================================================================== */
/** @name AOloopControl_computeCalib - 1. COMPUTING CALIBRATION */
/* =============================================================================================== */
/* =============================================================================================== */
// output:
// Hadamard modes (outname)
// Hadamard matrix ("Hmat.fits")
// pixel indexes ("Hpixindex.fits", float, to be converted to long)
long AOloopControl_computeCalib_mkHadamardModes(const char *DMmask_name, const char *outname)
{
long IDout;
long xsize, ysize, xysize;
// long IDdisk;
long cnt;
long Hsize;
int n2max;
long *indexarray;
long index;
long IDtest;
int *Hmat;
long k, ii, jj, n, n2, i, j;
long IDindex;
uint32_t *sizearray;
long IDmask;
IDmask = image_ID(DMmask_name);
xsize = data.image[IDmask].md[0].size[0];
ysize = data.image[IDmask].md[0].size[1];
xysize = xsize*ysize;
sizearray = (uint32_t*) malloc(sizeof(uint32_t)*2);
sizearray[0] = xsize;
sizearray[1] = ysize;
IDindex = create_image_ID("Hpixindex", 2, sizearray, _DATATYPE_FLOAT, 0, 0);
free(sizearray);
cnt = 0;
for(ii=0; ii<xysize; ii++)
if(data.image[IDmask].array.F[ii]>0.5)
cnt++;
Hsize = 1;
n2max = 0;
while(Hsize<cnt)
{
Hsize *= 2;
n2max++;
}
n2max++;
printf("Hsize n2max = %ld %d\n", Hsize, n2max);
fflush(stdout);
for(ii=0; ii<xysize; ii++)
data.image[IDindex].array.F[ii] = -10.0;
index = 0;
indexarray = (long*) malloc(sizeof(long)*Hsize);
for(k=0; k<Hsize; k++)
indexarray[k] = -1;
for(ii=0; ii<xysize; ii++)
if((data.image[IDmask].array.F[ii]>0.5)&&(index<Hsize))
{
indexarray[index] = ii;
// printf("(%ld %ld) ", index, ii);
data.image[IDindex].array.F[ii] = 1.0*index;
index++;
}
save_fits("Hpixindex", "!Hpixindex.fits.gz");
Hmat = (int*) malloc(sizeof(int)*Hsize*Hsize);
// n = 0
ii = 0;
jj = 0;
Hmat[jj*Hsize+ii] = 1;
n2=1;
for(n=1; n<n2max; n++)
{
for(ii=0; ii<n2; ii++)
for(jj=0; jj<n2; jj++)
{
Hmat[ jj*Hsize + (ii+n2)] = Hmat[ jj*Hsize + ii];
Hmat[ (jj+n2)*Hsize + (ii+n2)] = -Hmat[ jj*Hsize + ii];
Hmat[ (jj+n2)*Hsize + ii] = Hmat[ jj*Hsize + ii];
}
n2 *= 2;
}
printf("n2 = %ld\n", n2);
fflush(stdout);
IDtest = create_2Dimage_ID("Htest", Hsize, Hsize);
for(ii=0; ii<Hsize; ii++)
for(jj=0; jj<Hsize; jj++)
data.image[IDtest].array.F[jj*Hsize+ii] = Hmat[jj*Hsize+ii];
save_fits("Htest", "!Hmat.fits.gz");
IDout = create_3Dimage_ID(outname, xsize, ysize, Hsize);
for(k=0; k<Hsize; k++)
{
for(index=0; index<Hsize; index++)
{
ii = indexarray[index];
data.image[IDout].array.F[k*xysize+ii] = Hmat[k*Hsize+index];
}
}
free(Hmat);
free(indexarray);
return(IDout);
}
long AOloopControl_computeCalib_Hadamard_decodeRM(const char *inname, const char *Hmatname, const char *indexname, const char *outname)
{
long IDin, IDhad, IDout, IDindex;
long NBact, NBframes, sizexwfs, sizeywfs, sizewfs;
long kk, kk1, ii;
uint32_t zsizeout;
IDin = image_ID(inname);
sizexwfs = data.image[IDin].md[0].size[0];
sizeywfs = data.image[IDin].md[0].size[1];
sizewfs = sizexwfs*sizeywfs;
NBframes = data.image[IDin].md[0].size[2];
IDindex = image_ID(indexname);
IDhad = image_ID(Hmatname);
if((data.image[IDhad].md[0].size[0]!=NBframes)||(data.image[IDhad].md[0].size[1]!=NBframes))
{
printf("ERROR: size of Hadamard matrix [%ld x %ld] does not match available number of frames [%ld]\n", (long) data.image[IDhad].md[0].size[0], (long) data.image[IDhad].md[0].size[1], NBframes);
exit(0);
}
zsizeout = data.image[IDindex].md[0].size[0]*data.image[IDindex].md[0].size[1];
IDout = create_3Dimage_ID(outname, sizexwfs, sizeywfs, zsizeout);
long kk0;
# ifdef _OPENMP
#pragma omp parallel for private(kk0,kk1,ii)
# endif
for(kk=0; kk<zsizeout; kk++) // output frame
{
kk0 = (long) (data.image[IDindex].array.F[kk]+0.1);
if(kk0 > -1)
{ printf("\r frame %5ld / %5ld ", kk0, NBframes);
fflush(stdout);
for(kk1=0; kk1<NBframes; kk1++)
{
for(ii=0; ii<sizewfs; ii++)
data.image[IDout].array.F[kk*sizewfs+ii] += data.image[IDin].array.F[kk1*sizewfs+ii]*data.image[IDhad].array.F[kk0*NBframes+kk1];
}
}
}
for(kk=0; kk<zsizeout; kk++)
{
for(ii=0; ii<sizewfs; ii++)
data.image[IDout].array.F[kk*sizewfs+ii] /= NBframes;
}
printf("\n\n");
return(IDout);
}